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Abstract

Popular text-to-image (T2I) systems are trained on web-
scraped data, which is heavily Amero and Euro-centric, un-
derrepresenting the cultures of the Global South. To an-
alyze these biases, we introduce CuRe, a novel and scal-
able benchmarking and scoring suite for cultural represen-
tativeness that leverages the marginal utility of attribute
specification to T2I systems as a proxy for human judg-
ments. Our CuRe benchmark dataset has a novel cate-
gorical hierarchy built from the crowdsourced Wikimedia
knowledge graph, with 300 cultural artifacts across 32 cul-
tural subcategories grouped into six broad cultural axes
(food, art, fashion, architecture, celebrations, and people).
Our dataset’s categorical hierarchy enables CuRe scorers
to evaluate T2I systems by analyzing their response to in-
creasing the informativeness of text conditioning, enabling
fine-grained cultural comparisons. We empirically observe
much stronger correlations of our class of scorers to hu-
man judgments of perceptual similarity, image-text align-
ment, and cultural diversity across image encoders (SigLIP
2, AIMV2 and DINOv2), vision-language models (Open-
CLIP, SigLIP 2, Gemini 2.0 Flash) and state-of-the-art text-
to-image systems, including three variants of Stable Diffu-
sion (1.5, XL, 3.5 Large), FLUX.1 [dev], Ideogram 2.0, and
DALL-E 3. The code and dataset is open-sourced and avail-
able at https://aniketrege.github.io/cure/.

1. Introduction

Cultural diversity brings a collective strength that can
benefit all of humanity.

Robert Alan Arthur

Text-to-Image (T2I) systems [45, 48, 50, 53] are trained
on web-scale data [11, 22, 55, 56], which is long-tail in na-
ture [44]. This translates to hallucinations when generat-
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Figure 1. Three images of types of pottery generated by a state-
of-the-art T2I system, DALL-E 3, with varying amounts of infor-
mation in the prompt. The T2I system is consistently accurate at
generating “ceramic diyas” (a), but hallucinates incorrect details
for “jebena, from Ethiopia” (b) and “amphora of Hermonax, a
type of pottery from Greece” (c). Specifying more information in
the prompt can help (i.e. in c but not in b), but is an unreliable
method to make the T2I system more culturally representative.

ing images of data in the tail, as the model has not seen
enough examples during training. This training paradigm
has been shown to amplify societal biases and stereotypes
encoded in the training data [5, 12], including harmful and
offensive content [7, 8]. We show a simple example of T2I
system bias using a state-of-the-art T2I system [4] to gen-
erate images of culturally specific pottery in Fig. 1. Gener-
ating images with the text prompt “ceramic diyas” (a) gives
diverse, consistent and factual outputs, while prompting
with “jebena, from Ethiopia” (b) and “amphora of Her-
monax, a type of pottery from Greece” (c) generate diverse
but low quality and inaccurate images that do not resem-
ble pottery (b), or miss culture-specific details of the ar-
tifact (c). Building generative models that faithfully rep-
resent the diversity of human preferences, values, and ex-
periences across global cultures in this long tail requires a
culturally-aware benchmarking and reliable bias measure-
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Table 1. We tabulate existing cultural benchmarks for Text-to-Image Systems, organized by their contributions towards dataset design,
quantitative metrics to measure cultural representativeness, and towards the user study. We also tabulate statistics of the CuRe dataset
compared to existing cultural benchmark datasets. Here |R| is the number of cultural regions (countries), |S| the number of cultural axes
(supercategories), |C| the number of cultural categories, and |N | the total number of cultural artifacts. We also note the number of T2I
systems evaluated via a user study, and the number of T2I systems evaluated only quantitatively.

Work Dataset Quantitative Metrics # T2I Systems

Crowd-
sourced Scalable Category

Hierarchy |R| |S| |C| |N | New
Metric

Img-Txt
Sim

Img-Img
Sim Diversity In User

Study
Only

Quant

Liu et al. [39] ✓ 8 9 - 1095 1 1
Basu et al. [2] 27 - 10 - ✓ ✓ 2 2
Ventura et al. [65] 10 8 200 - ✓ ✓ ✓ 3 6
Jha et al. [27] 135 - - - ✓ ✓ 1 1
Khanuja et al. [31] ✓ 7 - 17 580 ✓ ✓ 2 2
Kannen et al. [30] ✓ ✓ 8 3 - 1000 ✓ ✓ 2 2
Zhang et al. [75] 10 9 - 595 ✓ ✓ ✓ 3 3
Bayramli et al. [3] ✓ ✓ 10 3 - 150 ✓ 3 3

CuRe (Ours) ✓ ✓ ✓ 64 6 32 300 ✓ ✓ ✓ ✓ 3 6

ment, which is non-trivial. A typical method to measure
bias is through large-scale user studies on crowdsourcing
platforms [27, 30], leveraging human judgments for assess-
ment. While this approach accurately reflects feedbacks
from humans, it is expensive and difficult to scale. To miti-
gate this cost, prior works propose proxy scorers to estimate
human judgments, such as computing similarity of gener-
ated images to real images with large neural encoders [31],
realism metrics [6, 25], alignment of images to some de-
sired attributes specified through text [31, 65] and cultural
diversity [30]. We find that these proxy scorers empirically
do not correlate well with human judgments of cultural rep-
resentativeness and similarity to ground truth across popular
T2I systems (Sec. 5). We also highlight the “generative en-
tanglement” of existing proxy scorers: a miscalibrated esti-
mate of T2I system quality due to overlapping training data
between the scorer and T2I system (Sec. 4.2).

Research Aim

Our goal is to measure the cultural representative-
ness capability of T2I systems across global cul-
tures, which we call CuRe.

To overcome these shortcomings, we propose CuRe, a
dataset and scorer suite to accurately and efficiently bench-
mark the cultural representativeness of T2I systems, i.e.
how equipped are state-of-the-art T2I systems at accurately
generating samples across global cultures that make up
their long-tail training data? We propose a novel frame-
work for scoring cultural representativeness through the
lens of marginal utility of increasing attribute specifica-
tion (Sec. 4.1), which correlates better to human judgments
than proxy scorers across T2I systems (see Tab. 2 - 4 in
Sec. 5). To enable measuring this marginal utility of infor-
mation, we create a benchmark dataset with a novel categor-

ical hierarchy of attributes, as seen in Fig. 2. We compare
our dataset and metric design to prior work in Tab. 1 and
summarize our contributions below:
• A new dataset constructed in a scalable fashion di-

rectly from the large crowdsourced Wikimedia knowl-
edge graph [69] with a novel coarse-to-fine categori-
cal hierarchy of 300 cultural artifacts across six cultural
axes, 32 cultural categories and 64 countries (see Fig. 2).

• A novel scoring of cultural representativeness through the
lens of marginal utility of specifying more information
to the T2I system across cultural attributes (e.g. cultural
axis, cultural category, and cultural region).

• A large-scale user study asking real humans to rate the
perceptual similarity, cultural representativeness, offen-
siveness, and stereotypicalness of T2I systems, alongside
detailed freeform feedback about culturally specific fail-
ures. We query workers who explicitly identify with the
culture of their country of nationality, which is largely an
unverified assumption made in prior works.

• A detailed analysis of how CuRe scorers correlate to
real human judgments of cultural representativeness
and factuality, which highlights the misleading takeaways
of popular status quo scorers (Sec. 5).

• For the first time, we evaluate the cultural capabilities of
a natively multimodal large language model (Sec. 5.7).

2. Related Work

Dataset Biases Datasets used to train generative mod-
els are known to have biases, including the Amerocentric
and Eurocentric geographical distribution bias [14, 58] of
crowd-labeled datasets such as ImageNet [52], Open Im-
ages [33] and MS COCO [37]. Several works also highlight
the data collection bias; e.g., on YFCC100m [60], the data
from underrepresented countries is often taken by tourists
(∼ 47% [67]), and does not capture the true local distribu-
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Figure 2. The CuRe dataset is constructed in a hierarchical fash-
ion (s → c → n, r) from Wikimedia with 300 cultural artifacts
n ∈ N grouped into 6 cultural axes s ∈ S, 32 cultural categories
c ∈ C, described by a name n and associated region r. For exam-
ple, s = “food”, c = “dumpling”, n = “banku”, r = “Ghana”.

tion of objects, people, and language. These dataset biases
propagate to T2I systems after training.

Text-to-Image System Biases T2I systems are predom-
inantly built on diffusion models [50, 53], autoregressive
Transformer models [17, 48, 73] or GANs [29, 54]. The
pretraining datasets of these models are web-scale [56] and
long-tail [44], and there have been several recent works ex-
amining the biases present within T2I systems. Several re-
cent works analyze the biases of T2I systems from a geo-
graphical [2], gender occupation [57], cultural [5, 64] and
social [40, 41] perspective. Luccioni et al. [40] provide an
excellent overview of T2I system biases, from the data col-
lection [7] and filtering [49] to model training [70].

Cultural Representativeness Metrics To measure CuRe
on benchmark datasets, prior works use proxy scorers such
as using deep image encoders to compute similarity of gen-
erated images to real images [31], which contain similar
dataset biases as T2I systems themselves [57]. Another
class of scorers use realism metrics [6, 25], which ignore
culture-specific nuance. Lastly, prior works evaluate image-
text alignment to carefully chosen prompts [31, 65] and cul-
tural diversity as a proxy for representativeness [30], which
often empirically do not correlate well human judgments
across global cultures (see Sec. 5).

Cultural Benchmarks To create cultural benchmarks to
measure T2I biases, previous works typically crowdsource
data, either directly from workers on online platforms [31,
46] or with massive inter-organization efforts [51]. Some
works also rely on cultural experts to create the data [39,
75]. While these methods can give high quality data, they
are expensive and inscalable, as to add new data to the
benchmark, new workers or experts must be hired each
time. To measure cultural biases, prior works rely on query-
ing users across global cultures for their judgment on im-
ages generated by T2I systems [2, 30, 31]. We overcome
these limitations by constructing our benchmark CuRe di-
rectly from the live Wikimedia graph [69], by traversing
parent nodes (cultural axes) and grouping child nodes (cul-
tural categories) by region. This methodology is both cheap

and scalable, as new categories can be added to our bench-
mark on-the-fly by crawling Wikimedia.

Multimodal Language Models There has been a sig-
nificant recent effort towards extending language models,
which only understand text, to multimodal large language
models (MLLMs) that can understand both text and im-
ages [15, 38, 61, 68, 74]. While the details of the pre-
training data of state-of-the-art MLLMs is typically hid-
den or proprietary, they are significantly larger than pre-
vious Vision-Language Models like CLIP [47, 56] and
perform very well on complex visual question answering
benchmarks [1, 51]. They can thus be directly queried for
culture-specific knowledge, similar to existing works that
use MLLMs as a judge [9]. Even at this scale of pretrain-
ing data, we show that MLLMs still fall short at evaluating
cultural representativeness (Sec. 5.7).

3. CuRe Dataset
Creating a high quality cultural benchmark is non-trivial for
two primary reasons: a) it requires significant crowdsourc-
ing efforts [30, 31, 51] or hiring domain experts [39, 75]
b) it requires good “cultural coverage”, i.e. collecting cul-
tural artifacts across a large number of cultural regions r
and cultural categories. We address the first difficulty by
designing a scalable dataset construction methodology that
enables democratic scaling, as any cultural artifact of in-
terest can easily be added to the benchmark by querying
Wikimedia1. We address the second difficulty by collecting
cultural artifacts across 64 countries, which is higher than
all existing cultural benchmarks (Tab. 1).

The necessity of Categorical Hierarchy Culture has a
sense of shared values through lived experiences and one’s
surroundings (intra-culture), which differ greatly across ge-
ographies (inter-culture) [26]. An important goal towards
accurately measuring cultural representativeness of T2I sys-
tems is to capture their behavior at both inter and intra-
culture levels. For instance, Cuisine is considered an impor-
tant axis of culture [13], yet it is difficult to compare how
well T2I systems do at generating cuisine of, for example,
the United States compared to Nigeria, as cuisine has very
high intra-class variance (diversity). We show that aggre-
gating bias measurement at such coarse levels can lead to
misleading takeaways about T2I performance (see diversity
measured by Vendi scores in Sec. 5.5). To mitigate this, for
each cultural axis, we propose comparing T2I performance
at a finer granularity of cultural categorization. For exam-
ple, many cultures around the world have their own form of
dumpling. While all these forms have the same core struc-
ture (i.e. much lower intra-class variance than cuisine as a
whole), they vary greatly in their ingredients, preparation,

1We open-source our dataset at https : / / github . com /
aniketrege/cure-bench
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Figure 3. An overview of the scorers and user study of CuRe. Through the lens of marginal utility of attributes, we analyze images I(a)
generated from prompts templates P (a) over attribute subsets a ⊆ {s, c, n, r} of the 300 cultural artifacts n ∈ N in our benchmark
dataset. For example, we generate an image from name and region attributes as I({n, r}) = fθ

(
P ({n, r})

)
. This is the middle image

(orange) in the figure above. These images are then scored by quantitative scorers ϕ (see Sec. 4) and user judgments from a large-scale
user study ϕ∗ (see Sec. 5.1). Crucially, cultural artifacts from region r are rated only by workers who identify with the culture of region r.

presentation, etc. specific to each culture. We design the
CuRe dataset with a novel coarse to fine hierarchy to cap-
ture these nuances of cultural categorization.

CuRe consists of a set of 300 cultural artifacts n ∈ N
organized in a categorical hierarchy of attributes: a name n
(e.g. “modak”), a cultural category c (e.g. “dumpling”), a
cultural supercategory s (e.g. “food”), and a cultural region
of origin r (e.g. India). The CuRe dataset has six cultural
axes (or supercategories) S, i.e. architecture, art, celebra-
tions, fashion, food, people, and each supercategory s ∈ S
contains exactly 50 artifacts. We show an illustration of the
CuRe dataset (s → c → n, r) in Fig. 2 and tabulate the
s → c hierarchy of the dataset in Tab. 8 (Appendix B).

4. Measuring CuRe

We describe our proposed measure of cultural representa-
tiveness capabilities of a T2I system, CuRe, through the
novel lens of marginal utility of information in Sec. 4.1.
We introduce this lens into three prominent existing classes
of quantitative scorers: approximating human perceptual
similarity via cosine distance between the generated im-
age and the ground truth (Sec. 4.2), evaluating image-text
alignment with a desired attribute specified through text as
a proxy for visual question-answering (Sec. 4.3), and mea-
suring the diversity of images generated by the T2I system
across global cultures (Sec. 4.4). We begin by setting up
some useful notation.

Notation: To generate an image of a cultural artifact n,
we must choose how to describe it to a T2I system using
some subset of artifact attributes a ⊆ {s, c, n, r}. To this

end, we construct a text prompt P with a template over
these attributes a. We summarize an exhaustive list of tem-
plates we use in Tab. 6 (Appendix B). We then pass this text
prompt P (a) to a T2I system f parametrized by weights θ,
which generates an image I , i.e.

I(a) = fθ
(
P (a)

)
,where

a ⊆ {s, c, n, r}

We show an example of three prompt templates and their
corresponding images over three attribute subsets for banku,
a type of dumpling from Ghana in Fig. 3. As seen in the fig-
ure, for this cultural artifact, the choice of a has a large im-
pact on the generated image. Choosing a = n or a = {n, r}
generates images from incorrect classes, i.e. a bank (in red)
and a man (in orange). When we add category information
informing the T2I system that banku is a type of dumpling,
i.e. a = {n, c, r}, the image generated (in green) much
more resembles real images of banku. To measure cultural
representativeness capability of T2I system fθ for region r,
we need a method of scoring the quality of generated im-
ages I . Let ϕ : I → R be a quality scorer for CuRe (e.g.
similarity of I to ground-truth images of artifact n).

Choosing a Scorer: The gold standard for quality scorer
ϕ is to survey a large number of people from region r to rate
T2I system performance along pre-defined rubrics such as
realism and image-text alignment, typically with a 1-5 scale
Likert score [36], which we denote ϕ∗ (see Fig. 3). We in-
terchangeably refer to Likert scores from the user study ϕ∗

as “gold scores”, as they are rated by humans who iden-
tify with the culture of r. Designing surveys to collect these
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human perceptual scores in this manner is non-trivial: elic-
iting calibrated scores is difficult and launching surveys is
expensive [35]. If enough people are not queried in the sur-
vey, there is also the possibility their scores may not corre-
late well with the opinions of people who will use the T2I
system after deployment [16]. To get around these diffi-
culties, existing works design automated quantitative proxy
scorers for cultural representativeness based on related but
distinct goals like image perceptual similarity, image-text
alignment, and diversity. These class of scorers have unique
strengths and weaknesses, and we find they empirically do
not correlate strongly to human judments of quality (Sec. 5).

4.1. Finding a CuRe through Information

Our insight towards designing a more accurate, reliable
scorer for CuRe across global cultures was motivated by
a question: how many attributes of a cultural artifact does
a T2I system need to know in order to faithfully generate
an image? We illustrate our insight through an example
in Fig. 3. We observe that simply specifying the name n
and cultural region {n, r} associated with banku, a type of
dumpling from Ghana, is insufficient for current state-of-
the-art T2I systems (Stable Diffusion 3.5 Large, FLUX.1
[dev], Ideogram 2.0) to produce an image faithful to its
real-world counterpart. When also specifying the category
{n, c, r}, the T2I system is able to generate an image that
appears more faithful to banku. When this image is passed
to existing quantitative scorers ϕ, they tend to overestimate
its cultural representativeness (see examples in Fig. 6).
However, when this image is shown to a real human who
identifies as culturally Ghanaian (ϕ∗), they highlight that
this image looks like a generic dumpling and does not re-
flect their cultural context of Ghanaian cuisine. Inspired by
this, we propose a hypothesis complementary to these ex-
isting quantitative scorers:

Key Insight

Evaluating how the change in information explic-
itly provided to a T2I system changes its behavior
reveals valuable insights into its cultural represen-
tativeness capabilities.

Unlike existing methods, this approach measures how
well a T2I system internalizes cultural knowledge by an-
alyzing the marginal utility of each additional attribute
specified during generation. For example, with the “banku”
artifact in Fig. 3, we need to marginally increase attributes
specified to the T2I system via the prompt a : n →
{n, r} → {n, c, r} for culturally accurate T2I generation.
We refer to this class of scorers as Marginal Information
Attribution (MIA) scorers. For each class of proxy scorer,
we show qualitative examples of the capability of MIA-

Figure 4. There is a large drop in ϕPS ∈ [0, 1], i.e. how visu-
ally similar images of cultural artifacts I(n) are to images of their
cultural category I(c), from the head → the long tail of the T2I
system (pierogi = 0.83 → banku = 0.49).

based scorers to differentiate cultural artifacts with vastly
different human-rated scores for perceptual similarity and
representativeness, while existing scorers are unable to do
so, in Fig. 6. We demonstrate this behavior quantitatively
over the entire CuRe dataset in Sec. 5. We formally define
the variant of MIA scorer for each class of proxy scorer in
the relevant section below.

4.2. Perceptual Similarity Scorers

The goal of perceptual similarity (PS) scorers is to com-
pute the similarity between a generated image I and an-
other set of images representing the same artifact n, which
are typically manually-curated ground-truth (GT) images
G. While these scorers correlate reasonably well with hu-
man perceptual similarity judments, collecting appropri-
ate ground-truth is expensive and occasionally infeasible.
The gold scorer for perceptual similarity is ϕ∗

PS(a) =
Likert(I(a), G), where a Likert score [36] of 1 indicates
very low perceptual similarity and 5 indicates very high
similarity. As getting these gold scores is inscalable and ex-
pensive, proxy quantitative scorers are used [18, 24], which
we call ϕGT . The proxy scorers often ignore when two im-
ages are semantically similar in favor of spatial and textural
consistency [23], which causes a discrepancy between real
human perceptual similarity ratings (see Fig. 6a).

To overcome these limitations, we propose a marginal
information attribution scorer, ϕPS , that compares T2I
image features of cultural artifacts specified only by their
name a = n to images generated with only their categor-
ical and region information a = c or a = {c, r}. We
hypothesize that if these images are similar, the T2I sys-
tem has learned the artifact’s cultural association well (e.g.
a : n → {c, r}) and the artifact likely lies in the head of the
T2I system’s distribution (Fig. 4 for n =“pierogi”). If these
images are very different (Fig. 4 for n =“banku”), the T2I
system has not learned categorical or region-specific asso-
ciations well, and we hypothesize it lies in the long tail and
shows poor CuRe performance. For example, while ϕ∗

PS

and ϕGT compute similarity of T2I generations of banku
I(n) to ground-truth images collected from a web database

5



Figure 5. Computation of image-text alignment score ϕITA(a)
on n = “Cristo Redentor” when changing attribute n → a. As
in Eq. (3), to compute ϕITA(a), a similarity score sim is taken
between image I(n) and text prompt P (a), and this is added to
the similarity score between I(n) and P (n).

G, ϕPS(n) instead computes similarity of T2I generations
of banku I(n) to T2I generations of dumplings I(c):

ϕGT (a) = sim(I(a), G) (1)

ϕPS(a) = sim
(
I(a), I(c)

)
(2)

Following the status quo for semantic similarity [28],
sim is a cosine distance between embeddings from state-of-
the-art large vision encoders (SigLIP 2 [63], AIMV2 [20],
and DINOv2 [43]). We note that since ϕPS compares only
generated images, it is much cheaper to compute than ϕGT

and ϕ∗
PS , which require high-quality ground-truth data G

and for the latter, also finding and hiring workers to provide
ϕ∗. A drawback of this class of scorer is in the presence
of ambiguity, i.e. if a cultural artifact has multiple mean-
ings. For example “damper” is both a culturally Australian
homemade bread, as well as a device used to suppress vibra-
tions in mechanical systems. ϕPS cannot differentiate these
easily, as it has no access to ground-truth information. We
avoid these cases by discarding ambiguous prompts during
our CuRe dataset design. We show the capability of ϕPS

at correlating to real human perceptual similarity judgments
compared to these strong baselines qualitatively in Fig. 6a
and quantitatively in Tab. 2.

4.3. Image-Text Alignment Scorers
The goal of image-text alignment (ITA) scorers is to com-
pute an “alignment” or similarity between an image and
a piece of text. CLIP [47] popularized using textual de-
scriptions of ImageNet classes as zero-shot labels for im-
age classification via unsupervised contrastive learning. In
a similar vein, to evaluate cultural representativeness, pre-
vious works evaluate how “close” generated images I(a)
are to textual descriptions of desired attributes P (a) in the
aligned latent space with vision-language models (VLMs)
like CLIP [47] and SigLIP [63]. We denote this class of
image-text scorers by sim(I(n), P (a)). For example, to
evaluate country-specific representativeness, Khanuja et al.
[31] check CLIP similarity of I(n) with P (r) = “This im-
age is culturally relevant to [r]”. We note that prior works
typically use CLIP trained on LAION-2B [55] as their VLM

of choice for image-text alignment, which has been shown
to have an Amero and Euro-centric bias [2, 40] and is also
part of the pretraining datasets of many popular T2I sys-
tems [29, 45, 50, 53, 73]. This overlap causes misleading
over-estimations of quality, which we call generative en-
tanglement (see Sec. 5.4 and Tab. 17 in Appendix G).

These image-text scorers assume that embeddings of im-
ages containing attribute a = n are clustered close in the
VLM latent space to embeddings of textual descriptions of
n. In other words, they rely on the VLM’s ability to dis-
tinguish cultural relevance to different regions by seeing
enough artifact-region associations (n, c → r) during train-
ing [51]. We show in Tab. 3 that VLM knowledge of this as-
sociation is difficult to query explicitly as sim(I(n), P (r)),
and indirectly querying this knowledge through the impact
of changing a : n → r correlates better with human judg-
ments, i.e. adding sim(I(n), P (r)) to sim(I(n), P (n)).
We thus define ϕITA as:

ϕITA(a) =
sim

(
I(n), P (n)

)
+ sim

(
I(n), P (a)

)
2

(3)

In contrast to baselines, when assessing an image of an
artifact e.g. toquilla in Fig. 6b, our scorer ϕITA(r) evalu-
ates both the visual correctness of toquilla being a hat, i.e.
sim(I(n), P (n)) and its cultural linkage to r = Ecuador,
i.e. sim(I(n), P (r)).

4.4. Diversity Scorers
The goal of diversity (DIV) scorers is to capture the het-
erogeneity or intra-class variance of images generated by
T2I systems [30]. In this work, we view diversity through
the lens of culture, i.e. how culturally diverse are T2I sys-
tems, and can diversity be a predictor of cultural repre-
sentativeness? We define intra-category diversity as the
extent to which T2I images generated with underspecified
prompts [2] of cultural artifacts I(c) or I(s) reflect culture-
specific nuances of regional variants I(n) or I({n, r}). In
other words, if we sample I(c) = “An image of a house” [2]
from a T2I system 100 times, how many of these 100 im-
ages will be r = Japanese or Canadian houses? We also
measure intra-artifact diversity, i.e. how diverse are mul-
tiple seeds of images of the same artifact I(n), e.g. when
sampling 100 images with P (n) =“an image of chicken
biryani”, is there heterogeneity in the images of chicken
biryani, or do they all appear visually homogeneous?

Existing works differ in the granularity at which they
compute and aggregate diversity. LPIPS [76] computes an
average over pair-wise dissimilarity of images across all
cultural artifacts n associated with category c using deep
features extracted from convolutional neural networks [34].
Similar to Perceptual Similarity scorers (Sec. 4.2), LPIPS
(which uses encoders trained on ImageNet [52]) can ignore
image semantics in favor of spatial, color, and textural con-
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Images Metric ϕ

n1

[43] 0.67
[63] 0.79
ϕ∗
CuRe 0.83

ϕ∗
PS 0.75

ϕPS ↓ 0.49

n2

[43] 0.62
[63] 0.71
ϕ∗
CuRe 0.31

ϕ∗
PS 0.44

ϕPS ↓ 0.65
AI : I(n) Real : G(n)

(a) Perceptual Similarity Scorer (ϕPS ). n1:
“Omurice”, n2: “Chicken Biryani”. Images
were generated with SD 3.5 Large.

Images Metric ϕ

[31] 0.13
[65] 0.11
ϕ∗
CuRe 1.00

ϕ∗
PS 0.75

ϕITA ↑ 0.14
[31] 0.11
[65] 0.09
ϕ∗
CuRe 0.17

ϕ∗
PS 0.15

ϕITA ↑ 0.01
AI : I(n) Real : G(n)

(b) Image-Text Alignment Scorer (ϕITA). n1:
“Sombrero”, n2: “Toquilla”. Images were
generated with FLUX.1 [dev].

Images Metric ϕ

LPIPS(n) 0.72
VS(c) 0.24
ϕ∗
CuRe 0.93

ϕ∗
PS 0.66

ϕDIV ↓ 0.57
LPIPS(n) 0.70
VS(c) 0.24
ϕ∗
CuRe 0.46

ϕ∗
PS 0.40

ϕDIV ↓ 0.79
AI : I(n) Real : G(n)

(c) Diversity Scorer (ϕDIV ). n1: “Spaghetti
and meatballs”, n2: “Saimin”. Images were
generated with FLUX.1 [dev].

Figure 6. A qualitative comparisons of our proposed MIA scorers compared to baselines for three scorer classes: a) Perceptual Similarity
(Sec. 4.2) ; b) Image-Text Alignment (Sec. 4.3) ; c) Diversity (Sec. 4.4). In the figure above, ϕ∗

CuRe and ϕ∗
PS are human judgments of

cultural representativeness and perceptual similarity from our user study (Sec. 5.1) normalized from their original 1 - 5 Likert scale to a 0 -
1 scale. The top row of images (n1) represent T2I generations of artifacts rated highly by humans (ϕ∗

CuRe, ϕ
∗
PS → 1), while the bottom row

(n2) represents low rated artifact generations (ϕ∗
CuRe, ϕ

∗
PS → 0). A lower divergence in perceptual similarity with marginally increasing

information captured by our scorer (ϕPS ↓) and a higher alignment of image features to textual queries for representativeness (ϕITA ↑)
correspond to better human judgments ϕ∗. While diversity in image generation is desirable, we empirically confirm prior observations of
an inverse relationship [30] between human judgments and quantitative measures of cultural diversity (ϕDIV ↓). We observe that across
scorer classes, our proposed scorers can differentiate between n1 and n2, while baseline methods treat them nearly the same.

Figure 7. Computation of diversity score ϕDIV on n = “modak”,
a type of dumpling from India. ϕDIV computes an aggre-
gate pairwise dissimilarity (LPIPS [76]) between multiple seeds
of images generated with varying attribute specification, i.e.
I(n), I(n, c), I(n, r), I(n, c, r). In the example above, this en-
compasses 16c2 = 120 pairs.

sistency [23]. Another recent approach to scoring diver-
sity is via Vendi Scores (VS) [21, 75], which quantify di-
versity by estimating the entropy of a kernel similarity ma-
trix computed over all pairs of artifacts (ai, aj) belonging to
same category c. While Vendi Scores capture intra-category
heterogeneity, they lack any sense of each individual arti-
fact’s image quality. Kannen et al. [30] propose quality-
weighting the Vendi score (qVS) with a human preference
reward model [71] to address this limitation.

We propose a modification to LPIPS that captures
marginal information attribution, which we show in Fig. 7.
For a given cultural artifact n, we consider a set of im-
ages generated with incrementally changing attributes, i.e.
{I(n), I({n, c}), I({n, r}), I({n, c, r})}. We compute
LPIPS over each pair in this set and take an average, which
we denote by:

ϕDIV = LPIPS
(
n, {n, c}, {n, r}, {n, c, r}

)
(4)

If ϕDIV ∼ LPIPS(n), diversity is relatively unaffected

as we increase information specified to the T2I system from
n → a (Fig. 20, Appendix H) and we hypothesize that
artifact n lies in the head of the T2I system distribution.
We demonstrate qualitatively (Fig. 6c) and quantitatively
(Tab. 4) that LPIPS, VS, and QVS do not correlate well with
human judgments of CuRe when compared to our scorer
ϕDIV .

5. Experiments
In this section, we discuss user study design (Sec. 5.1) and
how we measure the capability of our proposed scorers to
approximate real human judgments in Sec. 5.2. We then
discuss empirical setup and observations for each class of
scorer in the relevant section below, i.e. Perceptual Similar-
ity scorers ϕPS in Sec. 5.3, Image-Text Alignment scorers
ϕITA in Sec. 5.4, and Diversity scorers ϕDIV in Sec. 5.5.
Lastly, we benchmark popular state-of-the-art T2I systems
on our dataset with our proposed scorers in Sec. 5.6. Details
on T2I inference and seeding used to compute all scores is
provided in Appendix A.

5.1. User Study
To measure user judgments of T2I systems across global
cultures, we hire workers on the crowdsourcing tool Pro-
lific2. We hire three workers per region (by country of na-
tionality) to answer survey questions about the cultural arti-
facts from the CuRe dataset (Sec. 3) specific to their region.
We ask each worker from region r to rate on a 1-5 Likert
scale a generated image of artifact n for

2https://www.prolific.com/
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1. Cultural representativeness ϕ∗
CuRe, i.e. “How likely can

this image be found in your country?”
2. Perceptual similarity to ground-truth images ϕ∗

PS , i.e.
“How similar is this AI image to these four real images?”

3. Likelihood that the image belongs to its ground-truth
class ϕ∗

GT , i.e. “How likely is this an image of {n}”
We expect rational users to provide a similar rating for

ϕ∗
GT and ϕ∗

PS - the distinction being that workers are not
provided ground-truth reference images while rating ϕ∗

GT

and must rely on their prior knowledge of artifact n. We
discuss the UI, survey design choices, and survey questions
asked to workers in Appendix C. We also compare our study
to prior works in Tab. 9 (Appendix D). We pay workers the
platform set minimum of $8 per hour.

5.2. Scorer Correlation to Human Judgments
To validate the alignment of our proposed scorers (PS, ITA,
DIV) to real human judgments, we compute a Spearman
rank correlation ρ to three gold scores from the user study,
i.e. ϕ∗

CuRe, ϕ∗
PS , and ϕ∗

GT . Spearman’s ρ is a nonparamet-
ric measure of rank correlation, i.e. how well can the re-
lationship between quantitative proxy scorers and real hu-
man judgments be described by a monotonic function? A
ρ → 1 indicates a monotonically non-decreasing relation-
ship (e.g. in Tab. 2, as our proposed ϕPS scores increase,
human judments of CuRe and perceptual similarity also in-
crease). On the other hand, ρ → −1 indicates a monotoni-
cally non-increasing relationship (e.g. in Tab. 4, as our pro-
posed ϕDIV scores increase, human judments of CuRe and
perceptual similarity decrease). A ρ ∼ 0 indicates a very
weak correlation, i.e. the scorer contains very little predic-
tive signal over human judgments. We show qualitatively in
Fig. 6 that our proposed scorers can differentiate between
images treated differently by real humans (i.e. ϕ∗ are differ-
ent), while baseline scorers treat these images the same. We
discuss quantitative results over our entire CuRe dataset in
each corresponding section below.

5.3. Perceptual Similarity
In this section, we compare our proposed PS scorers to hu-
man judgments of cultural representativeness ϕ∗

CuRe, per-
ceptual similarity ϕ∗

PS and ground-truth label likelihood
ϕ∗
GT , as motivated in Sec. 5.2. We tabulate a Spearman

rank correlation across all artifacts n in the CuRe dataset in
Tab. 2.

First, we compare how perceptually similar images
of cultural artifacts I(n) are to generated images of
their cultural category I(c), e.g. T2I generated images of
n =“banku” and T2I generated images of c =“dumpling”
respectively:

ϕPS(n) = sim
(
I(n), I(c)

)
We find that our ϕPS(n) scorer is comparable to strong

Table 2. Spearman rank correlation ρ between perceptual sim-
ilarity (PS) scorers and user judgments ϕ∗

CuRe, ϕ∗
PS , and ϕ∗

GT

across state-of-the-art large image encoders and T2I Systems on
the CuRe dataset. ↑ indicates that ρ → 1 is better, and ↓ in-
dicates ρ → −1 is better. The highest magnitude of ρ in each
column is bolded for the scorer that a) uses ground-truth images
(ϕGT and Gemini) and b) does not use ground-truth images (ϕPS

and ∆ϕPS).

Encoder Scorer FLUX.1 [dev] SD 3.5 Large SD 1.5
ϕ∗
CuRe ϕ∗

GT ϕ∗
PS ϕ∗

CuRe ϕ∗
GT ϕ∗

PS ϕ∗
CuRe ϕ∗

GT ϕ∗
PS

- Gemini 2.0 Flash ↑ - - 0.40 - - 0.39 - - 0.40

SigLIP 2 [63]

ϕGT (n) ↑ 0.25 0.36 0.44 0.27 0.33 0.45 0.25 0.39 0.51
ϕPS(n) ↑ 0.18 0.25 0.32 0.22 0.29 0.38 0.18 0.27 0.30
∆ϕPS({n, c}) ↓ -0.16 -0.27 -0.31 -0.21 -0.32 -0.37 -0.02 0.03 0.04
∆ϕPS({n, c, r}) ↓ -0.17 -0.25 -0.30 -0.21 -0.33 -0.38 0.00 0.09 0.08

AIMV2 [20]

ϕGT (n) ↑ 0.20 0.28 0.39 0.24 0.32 0.44 0.20 0.35 0.45
ϕPS(n) ↑ 0.08 0.17 0.25 0.06 0.14 0.24 0.09 0.11 0.12
∆ϕPS({n, c}) ↓ -0.17 -0.30 -0.35 -0.19 -0.32 -0.31 -0.01 -0.02 0.02
∆ϕPS({n, c, r}) ↓ -0.18 -0.28 -0.32 -0.16 -0.30 -0.33 -0.01 0.04 0.05

DINOv2 [43]

ϕGT (n) ↑ 0.17 0.29 0.40 0.25 0.36 0.46 0.24 0.39 0.52
ϕPS(n) ↑ 0.13 0.22 0.30 0.15 0.29 0.35 0.15 0.27 0.30
∆ϕPS({n, c}) ↓ -0.19 -0.27 -0.32 -0.21 -0.32 -0.35 -0.07 -0.05 -0.01
∆ϕPS({n, c, r}) ↓ -0.19 -0.25 -0.31 -0.20 -0.31 -0.34 -0.08 0.00 -0.02

baseline ϕGT (n) = sim
(
I(n), G

)
in Spearman’s ρ with

the gold scores ϕ∗
GT across all T2I systems and image en-

coders, despite using no ground-truth informaton (Tab. 2).
Next, recall that we claim that the relative importance

or marginal utility of increasing attribute specification a ⊆
{n, c, r, s} to the T2I system can provide valuable signal to-
wards its cultural representativeness capabilities (Sec. 4.1).
To more directly measure this marginal utility, we evaluate
how much the change in attribute specification (n → {n, c}
and n → {n, c, r}) affects perceptual similarity by comput-
ing a divergence ∆ of ϕPS(a) from ϕPS(n) evaluated at
attribute subsets a = {n, c} and a = {n, c, r}:

∆ϕPS({n, c}) = 0.5 + ϕPS({n, c})− ϕPS(n)

∆ϕPS({n, c, r}) = 0.5 + ϕPS({n, c, r})− ϕPS(n)

We add a 0.5 scaling constant to our divergence scorers
to bring them to a similar scale as ϕGT and ϕPS .

On FLUX.1 [dev] and Stable Diffusion 3.5 Large, our
divergence scorers ∆ϕPS({n, c}) and ∆ϕPS({n, c, r})
match or outperform ϕGT (n) in Spearman’s ρ across gold
scores with AIMV2 and DINOv2 encoders. We note that
rank correlations of divergence scorers with gold scores are
always negative, since a low divergence with marginally
increasing information indicates high perceptual similarity
(denoted by ↓ in Table 2). Overall, for all image encoders,
all quantitative PS scorers ϕGT , ϕPS and ∆ϕPS correlate
weaker with gold CuRe scores ϕ∗

CuRe than gold ground
truth likelihood scores ϕ∗

GT and gold perceptual similarity
scores ϕ∗

PS , which they directly attempt to approximate.
Lastly, we also evaluate Gemini 2.0 Flash [15], a strong

natively multimodal large language model (see Sec. 5.7).
We query Gemini to score perceptual similarity between
I(n) and ground truth images G on a 1 to 5 scale, similar
to the setup for ϕGT (n) and ϕ∗

PS from the user study. We
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Table 3. Spearman rank correlation ρ between image-text align-
ment (ITA) scorers and user judgments ϕ∗

CuRe, ϕ∗
PS , and ϕ∗

GT

across T2I systems on the CuRe dataset. All scorers except Gem-
ini and human preference scorers (first block below) compute a
cosine distance with SigLIP 2 embeddings. The highest magni-
tude of ρ in each column is bolded, and ρ → 1 is the optimum
scorer.

Scorer FLUX.1 [dev] SD 3.5 Large SD 1.5

ϕ∗
CuRe ϕ∗

GT ϕ∗
PS ϕ∗

CuRe ϕ∗
GT ϕ∗

PS ϕ∗
CuRe ϕ∗

GT ϕ∗
PS

PickScore [32] 0.20 0.29 0.34 0.23 0.37 0.40 0.23 0.38 0.45
Imagereward [72] 0.19 0.21 0.26 0.16 0.24 0.31 0.23 0.30 0.35
HPS v2 [71] 0.23 0.29 0.33 0.18 0.35 0.37 0.24 0.39 0.43
Gemini 2.0 Flash 0.23 0.41 - 0.27 0.37 - 0.17 0.38 -

Khanuja et al. [31] 0.13 0.08 0.11 0.05 0.04 0.00 0.06 -0.02 -0.04
Ventura et al. [65] 0.19 0.15 0.14 0.10 0.07 0.05 0.11 0.02 0.01
o3-mini [42] 0.17 0.13 0.14 0.06 0.03 0.00 0.06 -0.01 -0.03
sim

(
I(n), P (n)

)
0.24 0.35 0.38 0.18 0.31 0.35 0.22 0.34 0.44

sim
(
I(n), P (c)

)
0.20 0.32 0.34 0.17 0.30 0.35 0.19 0.34 0.37

sim
(
I(n), P (r)

)
0.20 0.11 0.12 0.09 0.03 0.02 0.07 -0.04 -0.04

sim
(
I(n), P ({c, r})

)
0.25 0.35 0.38 0.22 0.31 0.36 0.24 0.34 0.38

ϕITA(c) 0.24 0.37 0.40 0.20 0.34 0.40 0.22 0.37 0.45
ϕITA(r) 0.28 0.33 0.35 0.20 0.27 0.29 0.23 0.29 0.39
ϕITA({c, r}) 0.27 0.38 0.42 0.23 0.34 0.39 0.24 0.36 0.44

observe that Gemini correlates almost identically well with
ϕ∗
PS across T2I systems, and slightly lags behind ϕGT (n)

in Spearman’s ρ.
We highlight that while ϕGT (n) and Gemini in general

show the highest correlation with human perceptual judg-
ments, our proposed scorers are capable of nearly match-
ing them in rank correlation with real human judgments
while using no ground-truth information, and are thus much
cheaper to compute. We note that no quantitative scorer sur-
passes ρ = 0.51, indicating that using cosine similarity with
dense vector embeddings from large vision encoders still
fall short at accurately approximating human judgements,
even with large state-of-the-art encoders [20, 43, 63].

Discussion: Failure Mode of our Scorer: While our PS
scorers approximate gold scores well for FLUX.1 [dev]
and SD 3.5 Large, divergence scorers ∆ϕPS correlate
very weakly with gold scores for SD 1.5, an older lower-
resolution T2I system trained on much less data. In con-
trast, the baseline scorer ϕGT (n) maintains similar corre-
lation across all T2I systems. This suggests that while our
scorer, while not requiring ground truth images, relies more
on the capacity of the T2I system to learn artifact - region
associations than baselines. In other words, it is more sensi-
tive to the coverage of the pretraining data, or the quality of
the base model (e.g. Image Arena Quality ELO in Tab. 5).

5.4. Image-Text Alignment
Similar to PS scorers, we evaluate all quantitative ITA
scorers via a Spearman rank correlation with gold scorers
(ϕ∗

CuRe, ϕ∗
GT and ϕ∗

PS) in Tab. 3. Recall that to compute
ϕITA in Eq. (3), we require a similarity measure between
images and prompts sim(I, P ). To evaluate the genera-
tive entanglement between T2I system and scorer, we use a
suite of vision-language models (VLMs) with different pre-

training datasets as our similarity measure: four versions
of OpenCLIP (trained on LAION-2B [56], Datacomp-1B
[22], DataFN-5B [19], and OpenAI WIT [47]) and SigLIP
2 [63]). We begin by discussing results only with SigLIP 2,
the current state-of-the art VLM.

First, we compare our scorer to three baseline scorers:
two prior works evaluating cultural relevance [31] and cul-
tural identity [65], and the best performing prompt P (r)
suggested by o3-mini [42]. We also evaluate alignment of
image I(n) to text prompts with marginally increased attri-
bution specification, i.e. P (n), P (c), P (r), and P ({c, r}).

Our evaluation reveals that comparing I(n) to P (n),
which specifies only the artifact’s name in the prompt (e.g.,
“Qingming festival”), consistently has a stronger positive
rank correlation with human judgments than all methods
that compare to only P (r) (baseline scorers [31, 42, 65]
and sim(I(n), P (r)) across all T2I systems (Tab. 3 block
2). This supports our claim in Sec. 4.3 that explicitly query-
ing VLMs for alignment to prompts describing the image
by name P (n) is more effective at assessing region-specific
cultural relevance than directly querying for cultural rele-
vance with region-specific prompts P (r). Replacing P (n)
with category-specific prompts P (c) (e.g. “spring festival”
for an image of Qingming festival), slightly reduces rank
correlation with all gold scores across all T2I systems,
which suggests that state-of-the-art VLMs learn n → c as-
sociations reasonably well. Lastly, using both category and
region specific prompts P ({c, r}) tends to match and oc-
casionally slightly outperform name-specific prompts P (n)
across T2I systems, indicating that switching to categori-
cal and regional information (n → {c, r}) is important to
capture culture-specific human judgments.

Next, we compare our scorers to state-of-the art human
preference reward model scorers [10] trained on a million
human-labeled pairwise preferences over T2I system gen-
erations, i.e. PickScore [32], Imagereward [72] and HPS
v2 [71]. Lastly, similar to PS scorers, we also evaluate Gem-
ini 2.0 Flash (details in Sec. 5.7).

Recall that our scorers ϕITA directly measure the
marginal utility of increasing attributes specified to the
T2I system in two parts, i.e. the T2I system’s abil-
ity to a) generate images that match textual descrip-
tions of the artifact (sim(I(n), P (n)), b) capture an ar-
tifacts categorical (sim(I(n), P (c)) and regional associa-
tions (sim(I(n), P (r)). We observe that ϕITA({c, r}) has
higher positive rank correlation than all baselines (Tab. 3
block 2) across T2I systems, and is slightly outperformed
by preference reward models trained on hundreds of thou-
sands of human-labeled preferences and Gemini on Stable
Diffusion T2I systems for ϕ∗

PS and ϕ∗
GT (ϕITA({c, r}) ≥

PickScore > HPS v2 > Imagereward). Our scorers outper-
form all methods including Gemini for FLUX.1 [dev].
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Remark: Generative Entanglement. So far we have dis-
cussed ITA scorer results only with SigLIP 2 as a base
VLM, the current state-of-the-art for image-text similarity
(Tab. 3). For a more rounded examination, we also eval-
uate the impact of changing the base VLM as a similar-
ity measure in the context of generative entanglement. In
Tab. 17 (Appendix G), we show that with FLUX.1 [dev],
all baseline methods have a high variance in Spearman’s ρ
to human judgments of perceptual similarity (ϕ∗

PS) with re-
spect to the choice of similarity measure (OpenCLIP variant
or SigLIP 2). In contrast, our scorers have lower variance
across VLMs. As these VLMs differ primarily in their pre-
training data, this result indicates that our scorers ϕITA are
much more robust to the choice of pretraining data and are
less entangled with the T2I system.

5.5. Diversity

We next show a Spearman’s rank correlation between all
quantitative scorers ϕDIV , LPIPS(n) and VS(c) and all
gold scorers (ϕ∗

CuRe(a), ϕ
∗
GT (a), and ϕ∗

PS(a)) in Tab. 4.
Consistent with our observations with PS and ITA scor-
ers, we show that ϕDIV correlates more to human judg-
ments than baselines across all T2I systems. This differ-
ence is more pronounced for modern, larger, high quality
T2I systems (FLUX.1 [dev] and SD 3.5 Large) compared
to a smaller, low quality T2I system (SD 1.5). See remark
on Image Arena ELO remark in Sec. 5.6 for a discussion on
overall T2I system quality.

First, we consider LPIPS(n), i.e. a pairwise dissimi-
larity between seeds of a single cultural artifact n (intra-
artifact), averaged over all artifacts in the CuRe dataset
n ∈ N . LPIPS(n) shows a weak negative correlation with
gold scores, but outperfoms Vendi Score [21] based scor-
ers VS(c) and qVS(c) substantially, which are nearly un-
correlated (ρ ∼ 0). As VS(c) is computed as an aggre-
gate at a coarse category level (intra-category) on static as-
signments over cultural artifacts and has no sense of image
quality (see Appendix H for details on VS computation), it
shows the weakest correlation with human judgments for
strong T2I systems (SD 3.5 Large and FLUX.1 [dev]. The
recent quality-weighted Vendi Score [30] fails to resolve
these limitations, as it simply scales VS(c) by a single scalar
quality measure q averaged over items (HPSv2 [71]), leav-
ing the rank correlation with human judgments unchanged.

In contrast, our MIA-based scorer ϕDIV achieves
stronger negative correlations with human judgments than
baselines for all T2I systems, especially those of higher
quality (SD 3.5 Large and FLUX.1 [dev]). In other words,
if by mixing images generated by the T2I system I(n) with
images generated with more information specification in the
prompt I({n, c}), I({n, r}), and I({n, c, r}), we observe a
drop in diversity, human judgments of CuRe and perceptual
similarity improve. In this case, the cultural artifact n is ho-

Table 4. Spearman rank correlation ρ between diversity (DIV)
scorers and user judgments ϕ∗

CuRe, ϕ∗
PS , and ϕ∗

GT across T2I sys-
tems on the CuRe dataset. The highest magnitude of ρ in each
column is bolded, and ρ → −1 is the optimum scorer.

Scorer FLUX.1 [dev] SD 3.5 Large SD 1.5

ϕ∗
CuRe ϕ∗

GT ϕ∗
PS ϕ∗

CuRe ϕ∗
GT ϕ∗

PS ϕ∗
CuRe ϕ∗

GT ϕ∗
PS

LPIPS(n) -0.11 -0.06 -0.16 -0.13 -0.06 -0.09 -0.04 -0.03 -0.02
VS(c) -0.02 -0.01 -0.01 0.03 0.02 0.05 0.01 -0.02 -0.02
qVS(c) -0.02 -0.01 -0.01 0.03 0.02 0.05 0.01 -0.02 -0.02

ϕDIV -0.20 -0.23 -0.30 -0.22 -0.23 -0.29 -0.07 -0.12 -0.11

mogeneous across marginally increasing attribute specifica-
tion and likely lies in the head of the T2I system’s distribu-
tion. This aligns with our hypotheses in Sec. 4.4 and indi-
cates the potential of marginal utilty of information specifi-
cation as a measure of diverse cultural representativeness.

Remark: Factuality-Diversity Tradeoff. We note that
while T2I systems being culturally diverse is a desired out-
come of training, a high diversity across all quantitative
scorers is negatively correlated to gold scores ϕ∗

CuRe and
ϕ∗
PS . This indicates there is a factuality-diversity trade-

off with existing state-of-the-art T2I systems, which agrees
with conclusions from prior work [30, 66].

5.6. Benchmark Results
We evaluate several popular state-of-the-art T2I systems on
the CuRe benchmark dataset with our three scorer classes
sorted by decreasing Image Arena T2I Quality ELO 3, an
overall measure of T2I quality, in Tab. 5. We note that
due to inbuilt safety filters, DALL-E 3 and Stable Diffusion
1.5 refuse to generate 17% and 1.5% of images respectively
(detailed breakdown in Appendix A.2). For all scorers, we
use the variant which had the highest negative Spearman’s
ρ with gold scores on average.

For perceptual similarity, we use our ∆ϕPS({n, c})
scorer (Sec. 5.3). As this scorer is a divergence, a value
closer to zero is better (↓). As our scorer requires generat-
ing multiple seeds (80) of I(c), we omit Ideogram 2.0 due
to API compute constraints. SDXL and DALL-E 3 perform
best for SigLIP 2 (SL2) cosine distance, while DALL-E 3
and FLUX.1 [dev] slightly edge out SD 1.5 and SDXL with
DINOv2 (DN2). AIMV2 (AM2) has lower separability be-
tween T2I systems, with SD 3.5 Large and 1.5 slightly edg-
ing out the other T2I systems. We would also like to caveat
that as our PS scorers show poor rank correlation to SD 1.5
(see discussion in Sec. 5.3), PS scores on SD 1.5 are likely
to be overestimates.

For image-text alignment, we use ϕITA({c, r})
(Sec. 5.4). Across VLM backbones, the Stable Diffusion
class of T2I systems perform quite strongly (XL ≥ 3.5
> 1.5) compared to FLUX.1 [dev], Ideogram 2.0 and

3https://artificialanalysis.ai/text-to-image#
quality, scores taken on June 10, 2025
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Table 5. We evaluate several state-of-the-art T2I systems on our CuRe benchmark across our three scorer classes: perceptual similarity
(Sec. 4.2), image-text alignment (Sec. 4.3), and diversity (Sec. 4.4), and tabulate the mean and standard deviation (µ ± σ) across all 300
artifacts in the CuRe dataset. The best entry of each column is bolded, and the next best if the T2I system is DALL-E 3 or SD 1.5∗, which
have moderate refusal rates due to safety filters (see Appendix A.2). The last row shows a Spearman rank correlation ρ between the scorer
and the Image Arena Quality ELO.

T2I System ELO ↑ ϕ∗
CuRe ↑ ϕ∗

PS ↑ ϕ∗
GT ↑ ϕPS ↓ ϕITA ↑ ϕDIV ↓

SL2 DN2 AV2 SL2 L2B WIT ALX

FLUX.1 [dev] 1045 2.814 ± 1.424 2.157 ± 1.141 2.251 ± 1.326 0.561 ± 0.110 0.575 ± 0.137 0.523 ± 0.049 0.094 ± 0.051 0.218 ± 0.059 0.209 ± 0.039 0.708 ± 0.078
Ideogram 2.0 1043 - - - - - - 0.096 ± 0.052 0.214 ± 0.067 0.195 ± 0.050 0.693 ± 0.072
SD 3.5 Large 1028 2.986 ± 1.439 2.396 ± 1.228 2.534 ± 1.393 0.567 ± 0.107 0.604 ± 0.166 0.532 ± 0.056 0.115 ± 0.047 0.251 ± 0.053 0.225 ± 0.036 0.670 ± 0.082
DALL-E 3∗ 922 - - - 0.562 ± 0.103 0.579 ± 0.143 0.525 ± 0.055 0.105 ± 0.051 0.219 ± 0.062 0.222 ± 0.041 0.789 ± 0.043
SDXL 840 - - - 0.557 ± 0.100 0.579 ± 0.151 0.520 ± 0.049 0.113 ± 0.051 0.255 ± 0.056 0.230 ± 0.039 0.753 ± 0.042
SD 1.5∗ 587 2.724 ± 1.412 2.094 ± 1.159 2.175 ± 1.291 0.559 ± 0.104 0.576 ± 0.142 0.519∗± 0.041 0.107 ± 0.050 0.240 ± 0.055 0.229 ± 0.035 0.755 ± 0.057

ρ with ELO 1.00 - - - 0.564 -0.100 0.564 -0.600 -0.657 -0.829 -0.600

DALL-E 3, and this is especially pronounced for CLIP
trained on LAION-2B. As Stable Diffusion systems were
trained on LAION-2B, we suspect their strong performance
on LAION is because of this overlap with the training
set of our scorer, which was also trained on LAION-2B
(generative entanglement, see Sec. 4.2 for details).

Lastly, for ϕDIV , which is an LPIPS score computed
over a mixture of seeds across prompt styles, DALL-E 3
outperforms SDXL and SD 1.5, which are substantially
ahead of the rest. It is noteworthy that DALL-E 3 had a 17%
refusal rate across all seeds of images on the CuRe dataset,
which likely caused a slight inflation in its diversity score
(as LPIPS is computed across all pairs, generating fewer
seeds will drop diversity less). Across all our scorers, Sta-
ble Diffusion XL performs the most consistently, followed
by DALL-E 3.

Remark: Relation to Image Arena ELO To compare to
crowdsourced user judgments of overall T2I system quality,
we compute a Spearman rank correlation of our scorers with
Image Arena ELO scores. Image Arena pits two T2I sys-
tems in a “battle”, where a user observes images generated
by each system with a fixed prompt and picks their preferred
image. Image Arena has collected 100K+ crowdsourced
pairwise preferences to compute ELO for 50+ popular T2I
systems. To begin with, we highlight that Image Arena ELO
does not perfectly correlate with human judgments from our
user study: on a 1-5 Likert Scale, the most culturally rep-
resentative (ϕ∗

CuRe) T2I system (SD 3.5) is only 0.2 points
(5%) better than the least culturally representative T2I sys-
tem (SD 1.5), while they are separated by nearly 500 ELO
points, i.e. a 93% chance that SD 3.5 will beat SD 1.5 in a
head-to-head pairwise comparison. For perceptual similar-
ity (ϕ∗

GT , ϕ
∗
PS), the point difference only increases to 0.36

(i.e. SD 3.5 is 9% better than SD 1.5).
Our PS divergence scorer ∆ϕPS shows weak negative

rank correlation to Image Arena ELO with DINOv2 embed-
dings (ρ = −0.100), but a moderately strong positive corre-
lation with SigLIP 2 and AIMV2 embeddings (ρ = 0.564).
This suggests that the degree to which perceptual similar-
ity of T2I system is indicative of overall T2I system quality

evaluated via pairwise preferences may be sensistive to the
choice of embedding backbone. With two popular back-
bones (SigLIP 2 and AIMV2), Spearman’s ρ suggests an
inverse relationship between a T2I system’s ability to gener-
ate images closely matching ground truth images and over-
all human judgments of quality (“is x better or y?”), which
may be dominated by aesthetic appeal or other factors [4].

Our ITA scorer has a strong negative correlation with Im-
age Arena ELO, especially with OpenAI CLIP as a VLM
backbone (WIT, ρ = −0.829). In other words, with in-
creasing T2I system quality, our scorer predicts lower im-
age feature alignment to the text prompt. We suspect that
this seemingly counter-intuitive result stems from a key dif-
ference in evaluation setup: our scorer uses “underspecified
prompts” [2] I(n), i.e. the T2I generations only have the at-
tribute name specified, whereas Image Arena ELO scores
are based on detailed, descriptive prompts. In such un-
derspecified cases, prior work has shown T2I systems with
higher quality (ELO) have more “creativity” and tend to pri-
oritize aesthetic visual appeal over actuality [4]. We also
find from our user study that higher quality T2I systems
rely on cultural stereotypes for generation (Appendix D.4),
which negatively impacts user judgments of quality.

Lastly, as high quality T2I systems like FLUX.1 [dev]
and SD 3.5 Large have seen orders of magnitude more data
during training, they can generate more diverse renditions
of underspecified prompts (which we also empirically ob-
serve through high ϕDIV scores for T2I systems with low
ELO). As diversity is often at odds with factuality [66], this
phenomenon ends up hurting the alignment of higher qual-
ity T2I systems to simple text prompts, i.e. P (c, r).

5.7. Multimodal LLM as a Judge
To our knowledge for the first time, we perform a prelimi-
nary, exploratory analysis of using a multimodal large lan-
guage model (MLLM) to approximate human judgments
(gold scores) of cultural representativeness (ϕ∗

CuRe) and im-
age perceptual similarity (ϕ∗

PS , ϕ∗
GT ).

Specifically, we query Gemini 2.0 Flash [15] with the
same set of questions asked to real humans in our user study

11



(details in Appendix I), and output a score from 1 (low) to 5
(high), i.e. the same scale as the Likert scores from our user
study (Sec. 5.1). We also query Gemini for a textual justi-
fication of its scores to inspect its reasoning. We follow the
same evaluation setup as PS, ITA and DIV scorers (Sec. 5.2)
and compute a Spearman rank correlation between Gemini
scores and gold scores from our user study. For PS scorers
Tab. 2, we observe that Gemini slightly lags behind ϕGT ,
and our scorers approximate both these strong baselines
well without access to any ground-truth images. For ITA
scorers (Tab. 3), we observe that Gemini 2.0 Flash nearly
matches (Flux.1 [dev] and SD 1.5) and occasionally outper-
forms (SD 3.5) our proposed ϕITA scorers in Spearman’s ρ,
suggesting a pretraining dataset has wider cultural coverage
of artifact - region associations compared to smaller VLMs
like OpenCLIP and SigLIP 2. Lastly, we examine Gem-
ini’s textual justifications for its scores to inspect the relia-
bility of its reasoning (see Fig. 22 in Appendix I). We find
that Gemini tends to overlook culture-specific details, even
when attribute details may be correct (e.g. textures, shapes
and patterns of an object that are not culturally accurate).
This issue is especially prevalent in regions from the Global
South (e.g. Nigeria, Ghana, Iran), where Gemini halluci-
nates culture-specific details (e.g. “jollof rice” from Ghana,
“Femi Kuti” from Nigeria and “sami headwear” from Fin-
land) and mistakenly highlights accuracy to the wrong cul-
ture (e.g. Chinese instead of Korean for “Chuseok” and
Egyptian instead of Iranian in “Takht-e Fulad”).

In summary, these initial findings suggest that while
a state-of-the-art multimodal LLM can show promise at
evaluating cultural representativeness, it requires access
to ground truth images for reliability (which none of
our scorers require), and hallucinates incorrect culture-
specific details, often in regions from the Global South.

6. Conclusion
In summary, we propose CuRe, a novel benchmarking
and scoring suite for cultural representativeness that lever-
ages the marginal utility of attribute specification to text-to-
image systems as a proxy for human judgments. Our CuRe
dataset has a novel categorical hierarchy that enables bench-
marking T2I systems in this manner. We empirically ob-
serve much stronger correlations to user judgments across
three quantitative scoring classes, i.e. perceptual similarity
(PS, Sec. 5.3), image-text alignment (ITA, Sec. 5.4), anall
cultural diversity (DIV, Sec. 5.5).

We highlight that our PS scorer approximates strong
baseline performance while using no ground-truth informa-
tion, indicating strong potential for efficient and democratic
benchmarking of T2I systems. Our ITA and DIV scor-
ers (Tab. 4) outperform or match all baselines, including a
strong multimodal large language model (Gemini 2.0 Flash,
Sec. 5.7). Finally, we highlight the generative entanglement

issue of prior benchmarks and scorers, i.e. a miscalibrated
estimation of human judgments caused by an overlap of T2I
system and quantitative scorer pretraining data (Tab. 3).

Limitations and Future Work While we employ a cate-
gorical hierarchy of attributes, similar to prior work [2, 31],
CuRe also uses geography as a proxy for culture (each arti-
fact has a single associated country of origin). In the future,
we would like to extend CuRe to a more holistic sense of
culture, such as religion and spoken language. For percep-
tual similarity scorers, we find that overall T2I system qual-
ity determines the ability of our scorer ϕPS to match hu-
man judgments of cultural representativeness. When using
a smaller and lower quality system (Stable Diffusion 1.5),
our scorers were less correlated with human judgments than
baseline scorers (Tab. 2), while this was not the case for
strong systems (Flux.1 [dev], Stable Diffusion 3.5 Large).
This scorer also suffers in the case of ambiguous prompts
(i.e. artifact name n referring to multiple distinct artifacts),
as it has no access to ground-truth image information to dis-
tinguish between them. We design our CuRe dataset to fil-
ter out such ambiguities. Lastly, while state-of-the-art na-
tively multimodal LLMs like Gemini 2.0 Flash (Sec. 5.7)
show promising initial results, they still tend to miss culture-
specific details. We highlight that our lens of marginal in-
formation attribution is complementary to MLLM scorers,
and believe this is a promising direction for future research.
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A. T2I Inference Details

Table 6. Text prompts P describing cultural artifact a given to gen-
erative model fθ with differing levels of informativeness indicated
by artifact attributes a ⊆ {n, c, s, r}.

Type Prompt Text Example

P (n) An image of {n} An image of jiaozi
P (c) An image of {c} An image of a dumpling
P (r) An image from {r} An image from China
P ({n, c}) An image of {n}, a type of {c} An image of jiaozi, a type of dumpling
P ({n, r}) An image of {n}, from {r} An image of jiaozi, from China

P ({n, c, r}) An image of {n}, a type of {c}
from {r}

An image of jiaozi, a type of dumpling
from China

A.1. Seeding
We use four of the prompt styles outlined in Tab. 6
to generate images for benchmarking from all T2I sys-
tems: P (n), P ({n, c}), P ({n, r}), P ({n, c, r}). We gen-
erate multiple random seeds for each prompt: for Stable
Diffusion XL and Stable Diffusion 1.5, we use 20 random
seeds, and for all other T2I systems, we use four random
seeds4. For all systems except Ideogram 2.0 (computational
constraints), we also generate 80 seeds with prompt P (c),
which is required for our perceptual similarity scorer ϕPS

(see Sec. 4.2 for details). For a given artifact, our scorers
compute a score on all seeds, which are then averaged to a
single score for that artifact, i.e. for N seeds,

ϕ(a) =
1

N

N∑
i=1

ϕ
(
I(ai) ;

)
A.2. Safety Filter Refusal
Due to the inbuilt safety filters of DALL-E 3 and Stable
Diffusion 1.5, many of our prompts were rejected and thus
we were unable to generate images over the entire CuRe
dataset. Tab. 7 shows the percentage of each supercategory
that was successfully generated, calculated as:

4DALL-E 3 has no dedicated random seed parameter. We follow prior
work on passing random seeds to DALL-E 3 via prompting: https:
//community.openai.com/t/consistent-variability-
using-seeding-with-dall-e-3/457823
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Table 7. Percent of each supercategory that was generated by
DALL-E 3 and SD 1.5.

Supercategory DALL-E 3 SD 1.5

Architecture 94.75% 99.80%
Art 78.50% 95.20%

Celebrations 95.63% 99.77%
Fashion 97.63% 99.05%

Food 97.63% 98.55%
People 33.50% 98.82%

T2I Acceptance Rate (s)

=
N img gen(s)

N img total(s)
∗ 100

=
N img gen(s)

N artifact(s) ∗N promptstyle ∗N seeds

where N artifact(s) = 50 for all supercategories,
N promptstyle = 4, and N seeds depends on the T2I
system (see Appendix A.1 for details).

B. Dataset Design
We created the CuRe dataset from the WikiMedia knowl-
edge graph [69]. We first manually shortlist culturally rele-
vant supercategories or cultural axes, i.e. Architecture, Art,
Celebration, Fashion, Food, and People. Within each super-
category, we search for Wikimedia categories structured as
“[category name] by country”. Our supercategory and cat-
egory structure (s → c) is shown in Tab. 8. To examine the
performance across the cultural long tail of T2I systems, we
select Wikimedia categories that contain countries across
the Global North / South divide, an example proxy for the
head and long tail pretraining distribution of T2I systems.
We filter out countries who contain less than four images
for a Wikimedia category, as we require these as a ground-
truth set for perceptual similarity scoring (Sec. 4.2) and our
user study (Sec. 5.1).

Under these conditions, we collect exactly 50 unique
region-specific named entities (cultural artifacts) for each
supercategory. Each supercategory has between four and
seven categories : “Traditional clothing” from the “Fash-
ion” supercategory contains 20 artifacts and the “People”
supercategory is balanced by region (5 famous people per
region over seven categories, i.e. occupations). Out of our
300 cultural artifacts, 123 are from countries considered
part of the Global North and 177 are from countries con-
sidered part of the Global South [62], which we decided
based on UNCTAD categorization as developed economies
(Global North) or developing economies (Global South).

Table 8. Supercategories and corresponding categories for our
CuRe benchmark dataset (Sec. 3).

Supercategory Category

Architecture

Bridge
Fortification
House
Monument and Memorial
Religious Building

Art

Bust
Fresco
Oil Painting
Pottery
Statue

Celebration

Carnival
Christmas Food
Harvest Food
New Year celebration
Spring Festival

Fashion

Embroidery
Hat
Jewellery
Traditional clothing

Food

Dumpling
Flatbread
Fried Dough
Noodle Dish
Rice Dish

People

Activist
Actor
Filmmaker
Musician
Politician
Sportsperson
Writer

C. User Study Design
We create and host 300 artifact-specific surveys for each T2I
system we evaluate (Stable Diffusion 1.55, Stable Diffusion
3.5 Large6 and Flux.1 [dev]7) using Qualtrics. We choose
these three T2I systems due to popularity on HuggingFace
their open-weights nature allowing democratic availability
for downstream research.

Our hosted surveys are sent to applicable workers

5https://huggingface.co/stable-diffusion-v1-5/
stable-diffusion-v1-5

6https : / / huggingface . co / stabilityai / stable -
diffusion-3.5-large

7https://huggingface.co/black-forest-labs/FLUX.
1-dev
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Figure 8. Q1a: Querying users for perceptual similarity of T2I
system generated image to ground-truth images.

through Prolific, a large crowdsourcing tool. For each ar-
tifact n in the CuRe dataset, we hire three workers whose
country of nationality match the region r of the artifact.
The survey was launched only in English. To minimize
the introduction of biases from the researchers themselves,
no rubric was provided to workers to answer survey ques-
tions, other than some examples of how T2I systems can
be stereotypical (see details in Appendix C.5) since work-
ers may be unfamiliar with T2I systems. Below, we provide
an overview of each section of our survey, which was orga-
nized as:

1. Disclosure (Appendix C.1)
2. Perceptual Similarity (Appendix C.2)
3. Artifact Familiarity Questionnaire (Appendix C.3)
4. CuRe: Cultural Representativeness (Appendix C.4)
5. Offensiveness and Stereotypes (Appendix C.5)
6. User Metadata (Appendix C.6)

C.1. Disclosure

We inform the workers of the survey goals, how their data
will be used, and how they can withdraw their consent later
if they choose to do so. They are asked for explicit and
informed consent for their data to be used, and provided an
option to opt-out.

Figure 9. Q1b: Querying users to rank (order) the similarity of the
ground truth images to the AI generated image from highest (top)
to lowest (bottom).

Research Study on the Cultural Biases of Gener-
ative AI
Thank you for taking the time for this survey. We
are a team of researchers from [place] who study the
cultural biases of generative artificial intelligence
(GenAI) models in an attempt to make them more
representative for everyone.
What we collect from you: Current country of resi-
dence, Nationality, First language, Country of birth,
Age, Sex, Participant ID.

How we use your data: To analyze the biases
of generative AI models to concepts local to your
culture and country. Your data will be stored in
an anonymized fashion in an online excel sheet,
and published to other researchers as part of an
academic study. We will always maintain your
anonymity, as we do not collect any identifiable in-
formation.

Withdrawing your data later: If you wish to with-
draw or remove your data at any time after this sur-
vey, you can contact us via Prolific’s anonymous
internal messaging tool, or directly contact our re-
search lead by email at [email]. We will then re-
move your data from our server. Please note that
while we will remove your data from our server, we
cannot guarantee this data will not continue to exist
elsewhere online.

Do you consent to your anonymized data being
used in this survey? Select ’Yes’ only if you fully
understand the information above. If you are unsure
or hestitant about providing your data, please select
’No’.
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C.2. Perceptual Similarity
We provide an image generated by the T2I system and ask
workers to rate similarity from 1 to 5 (low to high Likert
score) to a grid of ground-truth images from WikiMedia.
The worker is not told what the artifact is, only to rate visual
similarity.

We provide four images to the users, i.e. a single ran-
domly chosen seed generated with four prompt styles with
varying levels of attribute specification or informativeness
(see Appendix A.1). The user is asked Q1a: “How similar
do you think the generated image on the left is to the real
images on the right?” and asked to rate it on a Likert scale
from 1 (Not at all similar) to 5 (Extremely Similar) (see
UI in Fig. 8).

A secondary goal for perceptual similarity questionnaire
is to examine how consistent or homogeneous different
workers are at ranking perceptual similarity. We thus query
each worker for their ranking of ground-truth similarity, i.e.
Q1b: to rank the four ground truth images in the grid for se-
mantic similarity to the AI-generated image I(n). The user
is asked to drag letters that correspond to each image of the
2x2 ground truth grid (a, b, c, d) into a high-to-low order
(1 being most similar and 4 being the lowest). We show the
UI for Q1b in Fig. 9. We analyze worker disagreement over
perceptual similarity in Appendix D.2.

C.3. Artifact Familiarity Questionnaire
The worker is queried for their prior knowledge about arti-
fact a by its name n, i.e. “Had you ever heard of {n} before
seeing all the images above?”, with possible answer op-
tions being “Yes”, “No”, and “Unsure”. If the user answers
“Yes”, the user is then queried for a textual description of
their knowledge, i.e.

Please describe your knowledge about what {n} is
in 1-2 sentences.

For example, if you have seen ”the Statue of Lib-
erty” before and know what it is, you might write:

”The Statue of Liberty is a famous landmark in new
york city. It is a tall green statue of lady liberty hold-
ing a torch”

C.4. CuRe: Cultural Representativeness
From this point on in the survey, the user only shown the
AI image generated with prompt P (n). They are no longer
shown ground truth images. The user is informed what the
artifact name n and category c are. They are shown only the
T2I system image and asked to rate its CuRe from 1 to 5
(low to high Likert score) with Q3a: “How likely can the
item in this image be found in your country?”. The user is

also asked to rate the likelihood of the image belonging to
the class of artifact, as they now know its name, via Q3b:
“How likely is this an image of [artifact name]?”. The UI
for these questions is shown in Fig. 10.

Figure 10. User study interface for CuRe.

Finally, the user is also asked to share a textual descrip-
tion of the specific details contributing to the accuracy or in-
accuracy of the T2I system output in Q3c. This fine-grained
information is useful to identify details of why and how the
T2I system failed to accurately generate artifact n, i.e.

We are trying to understand when GenAI models get
culture-specific details right and wrong.

In your opinion, what specific details in the AI-
generated image above make it accurate or inaccu-
rate compared to how this object typically appears
in your country or your understanding of [artifact
name]?

For example, if the image is of the ‘Italian pasta’
and is inaccurate, you might say: ‘The image has
used the wrong kind of pasta noodles, ingredients,
and sauce, you would not see this kind of pasta in
my country or culture’.
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Figure 11. Description and examples given about stereotypes.

C.5. Offensiveness and Stereotypes
We ask workers to rate how offensive and stereotypical to
their culture the T2I system output is on a Likert scale from
1. Not at all to 5. A lot. For offensiveness, we query work-
ers zero-shot (i.e. no rubric or examples): “Images created
by GenAI models can be offensive or harmful, and this may
vary from person to person. In your opinion, does the above
image of [artifact name] seem offensive or harmful to you?”
Similar to cultural representativeness, we ask workers to
briefly justify their scores through text, i.e. “Please provide
a justification for your score above - what about this image
is offensive or not offensive, in your personal view? If it is
not at all offensive, simply stating so is sufficient.”

In contrast, to assess whether a T2I system perpetuates
visual cultural stereotypes, we provide workers with exam-
ples of how T2I systems can be stereotypical (see Fig. 11
for details), as we observed a vast gulf in understanding of
what “stereotypical” means in the context of T2I systems
during our pilot study.

C.6. User Metadata
Users are asked to provide non-identifiable metadata for
post-hoc analyis, i.e. their country of nationality and res-
idence, how much they identify with the culture of their
country of nationality and residence, and their level of fa-
miliarity with T2I systems (Fig. 12). Users are then queried
for Likert scores from 1 (“Not at all”) to 5 (“A lot”), simi-
lar to offensiveness: “Below is an image of [artifact name],
a type of [category name] created by a GenAI model. In
your opinion, how much does this image reflect any stereo-
types about your culture or country (of nationality or res-

Figure 12. Demographic information questions.

idence)?”. Similarly to offensiveness, they are also asked
for a textual justification of their score, i.e. “Please provide
a justification for your choice - what about this image is
stereotypical or not stereotypical of your culture or coun-
try, in your opinion? If you do not think it is stereotypical
at all, simply stating so is sufficient.”

D. Analysis of User Studies
We provide a detailed study of the user study responses
across our 2700 total surveys (3 T2I systems × 300 artifacts
× 3 workers per artifact).

D.1. Comparison to prior User Studies
We compare our CuRe user study to previous benchmark
and evaluations of T2I systems that included extensive user
studies as core contributions, which we show in Tab. 9. We
highlight that to our knowledge, ours is the only work that
queries explicitly for user cultural identity (i.e. for worker
hired to score an artifact n from country r, we ask them if
they identify with the culture of {r}) via worker metadata
(see Fig. 14 for details).

D.2. Inter-Annotator and Encoder Agreement
We use the perceptual similarity ranking from Q1b. to mea-
sure agreement between survey respondents over perceptual
similarity the same artifact I(n) to its ground-truth images
G(n) across T2I systems and image encoders. To com-
pute the similarity ranking from our scorer ϕPS(n), we sort
the cosine distance between dense embeddings in descend-
ing order, which matches how users were queried (Fig. 9).
We compute a Kendall’s Tau distance between the rankings
from the user study and the ranking given by our scorer
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Table 9. We tabulate a comparison of CuRe to existing works for
contributions towards culture-specific user studies. Here WRK =
did the study ask for worker metadata (“Do you identify with the
culture of your country of nationality?”), REP = cultural repre-
sentativeness, RLM = realism, PS = perceptual similarity, OFF =
offensiveness, STR = stereotypical, ρ-MET = does the work ana-
lyze how their metrics correlate with real human judgments?

Benchmark WRK REP RLM PS OFF STR ρ-MET

Liu et al. [39] ✓ ✓ ✓
Basu et al. [2] ✓ ✓ ✓
Ventura et al. [65] ✓
Khanuja et al. [31] ✓ ✓ ✓ ✓
Kannen et al. [30] ✓ ✓ ✓
Zhang et al. [75] ✓ ✓
Bayramli et al. [3] ✓ ✓

CuRe ✓ ✓ ✓ ✓ ✓ ✓

with three image encoder: SigLIP 2, AIMV2 and DINOv2.
We compute agreement between a ranking pair (ri, rj) as
a = (1 − KD(ri,rj)

max(KD(ri,rj))
). In Tab. 10, we tabulate an aver-

age over all permutations of ranking pairs for an artifact n
in two settings: first, only ranking pairs provided by work-
ers (“Worker Only”), and then for each (worker, encoder)
ranking pair:

agreement =
1

|(i, j)|
∑
(i,j)

a(i, j) (5)

For example, for agreement over only three survey re-
spondents for each survey (“Worker Only”), we have 3c2 =
3 pairs of rankings to compute agreement over, which we
average. Similarly for each image encoder, we have 3c2 =
3 pairs of rankings to average over, i.e. one encoder rank-
ing compared against each of the three survey respondent
rankings.

As seen in Tab. 10, we observe that disagreements are
fairly consistent between workers across T2I systems when
averaged over the entire CuRe dataset. When adding the
ranking of an encoder to Eq. (5), there is minimal change in
the agreement value.

Table 10. Agreement between the user survey responses and the
other users who took the same survey or different image encoders.

Config User Survey

FLUX.1 [dev] SD 3.5 Large SD 1.5

Worker Only 0.776 ± 0.028 0.771 ± 0.027 0.778 ± 0.029

SigLIP 2 0.759 ± 0.026 0.756 ± 0.026 0.758 ± 0.026
AIMV2 0.755 ± 0.024 0.754 ± 0.028 0.752 ± 0.025
DINOv2 0.763 ± 0.027 0.754 ± 0.026 0.754 ± 0.025

We also qualitatively examine cases with high worker
disagreement over cultural representativeness ϕ∗

CuRe (i.e.,

one worker assigns high score, and one low), alongside
their textual justification for their score in Fig. 13. A major
cause of disagreement is a miscalibration between worker
thoughts and the Likert score selected. For example, for
E2 (Rostás Pál Monument), workers disagree on the his-
torical relevance to Slovenia, but one worker gives a score
of 5 out of 5 even though they “don’t think it has much in
common with the original details.” A similar miscalibra-
tion occurs with E7 (Hardangerbunad), where one annota-
tor gives a perfect score despite explicitly stating the image
does not depict the traditional clothing at all, instead show-
ing a scenic landscape.

Another common disagreement arises from workers’ dif-
fering emphases on semantic content versus specific visual
details as larger contributors to CuRe. For instance, for
the E1 (Yangpu bridge), one worker says the main tower
looks European instead of Chinese, while another remarks
that the bridge structure and details are reminiscent of more
modern bridges in China. This pattern also appears in sev-
eral additional examples: E3 (Hogmanay), where where
one worker highlights incorrect details, while another fo-
cuses on the fireworks and crowd presence being accu-
rate; E8 (Kaapse Klopse), where one worker pointed out
the depicted person’s race was wrong, but the other stated
the image was accurate; E10 (Golestan Palace), where ar-
chitectural detail is judged differently by annotators; and
E11(Stanza dell’Amore Coniugale), where one worker as-
signs low score as the clothes, composition, colors, and sub-
jects are inaccurate to 16th century Italian art, while another
gives a high score due to one specific detail being wrong.

Finally, in another distinct case, workers appear to agree
in their justification but assign vastly different Likert scores.
In E4 (cowboy hat), this discrepancy appears to result from
a misunderstanding of the Likert scale rubric (1 is low and
5 is high). Similarly for E12 (Brooklyn Bridge), one an-
notator highlights several authenticity problems such as an
overly clear sky and incorrect arch proportions yet still gives
a relatively high score (4 out of 5). In E9 (Kue Nastar), both
workers critique an unrealistic topping decoration, but one
penalizes this mistake heavily (1 out of 5) while another
does not penalize it it at all (5 out of 5). Lastly for E5 (pa-
bellón criollo), a worker assigns a high score despite rec-
ognizing that the image does not depict the intended dish,
suggesting that the error arose due to underspecification in
the T2I prompt (i.e. the T2I system should be told explicitly
that pabellón criollo is a type of food).
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E# AI Image Real Image Feedback

E1

Yangpu Bridge

ϕ∗
CuRe = 1 out of 5: The most different part is probably the main tower. The AI-generated

main tower is more like something that would appear in Europe.

ϕ∗
CuRe = 5 out of 5: This is very typical of modern bridges in China. The structure is very

normal; there are cars driving over the bridge; both sides of the river have tall, modern
buildings and even skyscrappers.

E2

Rostás Pál Monument

ϕ∗
CuRe = 1 out of 5: the picture does not show the history of the Slovenian nation

and does not show the history of this area-europe at all

ϕ∗
CuRe = 5 out of 5: I think Al correctly interpreted the historical and cultural context

of my country, although I don’t think it has much in common with the original details.

E3

Hogmanay

ϕ∗
CuRe = 1 out of 5: fireworks are too low, faces blurry and distorted

ϕ∗
CuRe = 5 out of 5: The image shows displays of fireworks which are often associated

with celebrating Hogmanay, and also large crowds of people who gather t[o] celebrate
and watch the fireworks

E4

Cowboy Hat

ϕ∗
CuRe = 1 out of 5: The image of cowboy hats is pretty accurate. In my country

of residence, this would be a pretty representative image.

ϕ∗
CuRe = 5 out of 5: Cowboy hats from my country are made from straws or leather

which is shown in the picture here.

E5

Pabellòn criollo

ϕ∗
CuRe = 1 out of 5: The image does not look anything like the typical dish. It has

nothing in common, it shows a ”corridor type pavilion” I think is very misguided.

ϕ∗
CuRe = 5 out of 5: Ok, the image created by the AI is a creole Pavillion in terms of

a farm in Venezuela, i think when it was created by AI , the instructions have to be
more specific, i mean telling the AI that is referred to a typical food

E6

Fawad Khan

ϕ∗
CuRe = 2 out of 5: The image is more bright and shows different features of him

ϕ∗
CuRe = 5 out of 5: In the image he is wearing shalwar kameez with a waistcoat

which is a typical attire of Men in Pakistan. So the image is quite accurate.

Figure 13. Feedbacks of the workers in cases of high disagreement over perceptions of cultural representativeness ϕ∗
CuRe of the T2I system

for artifact n (Part 1).
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E# AI Image Real Image Feedback

E7

Hardangerbunad

ϕ∗
CuRe = 1 out of 5: This image doesn’t show anything connected to Hardangerbunad

which is an item of clothing, it shows a landscape with mountains and fjords.

ϕ∗
CuRe = 5 out of 5: This isn’t a picture of a bunad at all, but rather a picture associated

with Norwegian cultural heritage, a beautiful landscape with mountains and fjords.

E8

Kaapse Klopse

ϕ∗
CuRe = 1 out of 5: The image used the wrong race of the person

ϕ∗
CuRe = 5 out of 5: It appears much acurate and more clear

E9

Kue Nastar

ϕ∗
CuRe = 1 out of 5: the star on top of the pastry is not realistic and is unlikely to be

found in my country. The colour of the pastry is similar to what a kue nastar would look
like in my culture

ϕ∗
CuRe = 5 out of 5: It’s almost similar to normal nastar, except that nastar in my country

usually has cheese on top or just plain.

E10

Golestan Palace

ϕ∗
CuRe = 2 out of 5: The flooring’s pattern is really irrelevant. You will not find this pattern

in Iranian architecture. Besides the walls are exaggerated. If we neglect the pavement, it
could be an Iranian moscque

ϕ∗
CuRe = 5 out of 5: The architecture of windows, walls and ceramics are really like the

samples that can be seen in iran palaces or mosques

E11

Stanza dell’Amore Coniugale

ϕ∗
CuRe = 1 out of 5: The clothes of the two figures, the composition of the image, the

colors and the subject in general do not reflect the style of Italian art in the 16th Century.

ϕ∗
CuRe = 4 out of 5: The image shows two lovers touching and almost kissing, while in

the real painting they aren’t.

E12

Brooklyn Bridge

ϕ∗
CuRe = 1 out of 5: The sky is far too clear for the NYC skyline (lacking smog haze),

the archways are too tall and narrow, and the meshing on the sides did not exist the last
time I was in the city

ϕ∗
CuRe = 4 out of 5: The floor part does not look authentic as well as the surrounding

city

Figure 13. Feedbacks of the workers in cases of high disagreement over perceptions of cultural representativeness ϕ∗
CuRe of the T2I system

for artifact n (Part 2).
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Figure 14. Responses to “Do you identify with the culture of [country]?” summed across all surveys belonging to each region r, grouped
on the X-axis by Continent (L to R: Africa, Asia, Europe, North America, Oceania, South America) and sorted in ascending order of
number of responses (count).

Figure 15. A histogram of worker familiarity with generative AI models like ChatGPT or DALL-E from 1 (“Never Heard of It”) to 5
(“Expert”) summed across all workers and surveys (3 T2I systems × 300 artifacts × 3 workers per artifact = 2700 total).

D.3. Survey Respondent Statistics

Recall that we only hire workers to score surveys of arti-
fact n if their country of nationality matches the artifact’s

associated region r (Sec. 5.1). We query workers for their
perception of their own cultural identity to determine if they
would be a reliable judge of culture-specific perceptual sim-
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ilarity. Users are asked if they identify with the culture of
their country of nationality and residence, and given options
“Yes”, “No”, or “Unsure”. We show a bar plot of worker
responses for each region r in the CuRe dataset (64 to-
tal) in Fig. 14, grouped on the X-Axis by continent. We
observe that respondents identify more with the culture of
their country of nationality than the culture of their country
of residence, especially in Africa, Asia, and South America,
likely indicating that they are immigrants. We also ask re-
spondents to rate their familiarity level with generative AI
models (see UI in Fig. 12) on a scale of 1 - Never heard
of it to 5 - Expert, which we visualize with a bar plot in
Fig. 15. We observe that 92% of Prolific workers have used
generative AI tools at least a few times, and are thus mod-
erately aware of what generated responses look like (fami-
larity score = 3.53± 0.8).

D.4. Gold Scores in the Head and Long Tail.
We examine statistics for scores provided by survey respon-
dents for the evaluation axes detailed in Appendix C, i.e.
offensiveness (ϕ∗

OFF ), stereotypicalness (ϕ∗
STR), cultural

representativeness (ϕ∗
CuRe), perceptual similarity to ground

truth (ϕ∗
PS), and ground truth likelihood (ϕ∗

GT ). We would
like to examine how human judgments of T2I system qual-
ity change in the head and long tail of its distribution. For
this purpose, we use a proxy clustering of artifacts into two
disjoint sets, i.e. cultural artifacts from regions belonging to
the Global South (GS), and those belonging to the Global
North (GN).

First, in Tab. 11, we look at gold scores for each T2I
system (FLUX.1 [dev], Stable Diffusion 1.5, Stable Diffu-
sion 3.5 Large) clustered into two disjoint sets or groups: .
Across T2I systems, Offensiveness and Stereotypicalness
are generally lower in the Global North than South, and
this difference is most pronounced for the lowest quality8

system, Stable Diffusion 1.5 (0.3 - 0.4). As expected, T2I
system offensiveness increases with decreasing T2I system
quality. Interestingly, in the Global North, stereotypicalness
increases with increasing T2I system quality, indicating
the in the case of underspecified prompts (I(n)), higher
quality T2I systems may lean into more stereotypical
representations of cultural artifacts. Cultural representa-
tiveness (ϕ∗

CuRe) and perceptual similarity gold scores (ϕ∗
GT

and ϕ∗
PS) are consistently higher in the Global North across

T2I systems, but the maximum increase over Global South
is only 0.24 (ϕ∗

GT for SD 1.5). Overall for ϕ∗
CuRe, ϕ∗

GT and
ϕ∗
PS , SD 3.5 > FLUX.1 [dev] > SD 1.5, which slightly

disagrees with Arena Bench ELO quality (Tab. 5).
Next, in Tab. 12, we take a deeper look at gold scores on

a single T2I system, FLUX.1 [dev], with cultural artifacts
clustered into continents. Asia shows the highest offensive-
ness and stereotypicalness, followed by Africa and South

8by Arena Bench ELO, see Tab. 5

Table 11. Mean and variance of Likert scores (gold scores) of im-
ages generated by FLUX.1 [dev] over cultural artifacts grouped
by the artifact’s region lying in the Global North (GN) or Global
North (GS). We tabulate offensiveness (ϕ∗

OFF ) and stereotypical-
ness (ϕ∗

STR), cultural representativeness (ϕ∗
CuRe), perceptual sim-

ilarity to ground truth (ϕ∗
PS), and ground truth likelihood (ϕ∗

GT ).
The highest entry in each column is bolded. Arrows indicate
whether a lower (↓) or higher (↑) gold score is better.

T2I System Region ϕ∗
OFF ↓ ϕ∗

STR ↓ ϕ∗
CuRe ↑ ϕ∗

GT ↑ ϕ∗
PS ↑

FLUX.1
[dev]

GN 1.29 ± 0.54 1.86 ± 1.29 2.94 ± 1.41 2.38 ± 1.34 2.19 ± 1.11
GS 1.35 ± 0.68 1.82 ± 1.34 2.73 ± 1.43 2.16 ± 1.31 2.13 ± 1.16

SD 3.5
Large

GN 1.29 ± 0.75 1.75 ± 1.05 3.02 ± 1.44 2.67 ± 1.40 2.46 ± 1.20
GS 1.36 ± 0.78 1.91 ± 1.25 2.96 ± 1.44 2.44 ± 1.39 2.35 ± 1.25

SD 1.5 GN 1.35 ± 0.83 1.65 ± 1.06 2.81 ± 1.40 2.32 ± 1.34 2.18 ± 1.19
GS 1.61 ± 1.06 2.02 ± 1.25 2.67 ± 1.42 2.08 ± 1.25 2.04 ± 1.13

Table 12. Mean and variance of Likert scores (gold scores) of im-
ages generated by FLUX.1 [dev] over cultural artifacts grouped by
continent. We tabulate offensiveness (ϕ∗

OFF ) and stereotypical-
ness (ϕ∗

STR), cultural representativeness (ϕ∗
CuRe), perceptual sim-

ilarity to ground truth (ϕ∗
PS), and ground truth likelihood (ϕ∗

GT ).
The highest entry in each column is bolded. Arrows indicate
whether a lower (↓) or higher (↑) gold score is better.

Cont ϕ∗
OFF ↓ ϕ∗

STR ↓ ϕ∗
CuRe ↑ ϕ∗

GT ↑ ϕ∗
PS ↑

Africa 1.37 ± 0.83 1.90 ± 1.27 2.83 ± 1.49 2.27 ± 1.34 2.25 ± 1.22
Asia 1.55 ± 1.00 2.04 ± 1.21 2.84 ± 1.42 2.25 ± 1.32 2.22 ± 1.17

Europe 1.29 ± 0.73 1.74 ± 1.07 2.77 ± 1.42 2.26 ± 1.29 2.12 ± 1.15
NA 1.29 ± 0.76 1.79 ± 1.18 3.29 ± 1.40 2.97 ± 1.44 2.61 ± 1.23

Oceania 1.24 ± 0.73 1.52 ± 1.01 2.84 ± 1.42 2.44 ± 1.43 2.10 ± 1.07
SA 1.34 ± 0.84 1.67 ± 1.10 2.62 ± 1.35 2.11 ± 1.29 2.07 ± 1.15

America, which agrees with prior work [5, 27]. For cul-
tural representativeness (ϕ∗

CuRe), North America is higher
than all other continents (+ 0.4). For perceptual similarity
gold scores (ϕ∗

GT and ϕ∗
PS), North America is significantly

higher than other continents (+0.5), with Oceania second
best. Overall for ϕ∗

CuRe, ϕ∗
GT and ϕ∗

PS , Africa, Asia, and
Europe are nearly equivalent, while South America is the
lowest.
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(a) Art (b) Architecture (c) Celebrations

(d) Fashion (e) Food (f) People

Figure 16. Frequency estimation (log scale) for 50 cultural artifacts across each of the six supercategories (cultural axes) in the CuRe
dataset on LAION-SD15, the fully open pretraining dataset of Stable Diffusion 1.5 [50].

E. Concept Frequency Estimation
In recent times, state-of-the-art T2I systems do not have
fully open pretraining data, i.e. it is unknown whether any
particular image lies in the learned distribution of a mod-
ern T2I system. However, for the older Stable Diffusion
1.5, we have full access to its entire pretraining data, i.e.
a mixture of LAION-2B-en9 [56] and LAION-Aesthetics
V2 5+10, both of which are publicly and openly accessible.
We can thus know with certainty whether a given image be-
longs to the training data of SD 1.5. We henceforth refer
to this dataset mixture as LAION-SD15. As in Parashar
et al. [44], we explictly compute a concept frequency for
every cultural artifact in the CuRe dataset on LAION-SD15
with string matching. We note that the original datasets on
which SD 1.5 was trained were taken down and re-released
due to problematic CSAM content [8, 59]; we use the re-
released variants for our frequency computation. As seen in
Fig. 16, all supercategories in our CuRe dataset show long
tail behavior in LAION-SD15 across 50 cultural artifacts.
We observe a very low occurence of many artifacts in the art
and architecture supercategories, as these are often specific
and unique named entities which may occur rarely in the
dataset when compared to more common items with high
intra-class variance such as food, celebrations or people.

We also compute a Spearman rank correlation of the arti-
fact occurence frequency in LAION-SD15 with the ground
truth likelihood Likert scores (see Appendix C for more de-
tails) provided by survey respondents for FLUX.1 [dev], SD

9https : / / huggingface . co / datasets / laion /
relaion2B-en-research-safe

10https://laion.ai/blog/laion-aesthetics/

3.5 Large, and SD 1.5 in Tab. 13. We expect a higher oc-
curence frequency to correspond to better user judgments,
as the T2I system should be able to accurately generate ar-
tifacts it has seen many times (the “head” of the T2I sys-
tem distribution). We observe that for Celebrations, Food,
Fashion, and People, there is a large positive correlation
with user perceptions of the likelihood of the T2I system
output I(n) belonging to the class of artifacts n (e.g. as-
signing high score to the likelihood of images of spaghetti
actually representing “spaghetti” as an artifact). Correla-
tions are low for art and architecture, which we suspect is
due to the large portion of their tail having very small fre-
quency counts (Fig. 16). While the datasets used to train
SD 3.5 Large and FLUX.1[dev] are not public and we can-
not explicitly compute concept frequencies, since they show
similar rank correlations to user judgments as SD 1.5, we
predict that the CuRe dataset shows a similar long tail be-
havior across cultural artifacts for SD 3.5 and FLUX.1[dev]
as well.

Table 13. Spearman rank correlation between occurrence fre-
quency in the LAION-SD15 dataset of each cultural artifact in the
CuRe dataset with human perceptions of ground-truth likelihood
from the user study, ϕ∗

GT (Sec. 5.1 for details). Results are tab-
ulated for each supercategory and for SD 1.5, SD 3.5 Large, and
FLUX.1 [dev].

T2I Supercategory

Art Architecture Celebrations Food Fashion People

SD 1.5 0.04 0.10 0.40 0.59 0.34 0.22
SD 3.5 Large 0.05 0.13 0.48 0.55 0.27 0.23
FLUX.1 [dev] 0.01 0.06 0.30 0.38 0.44 0.34
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F. Perceptual Similarity
As detailed in Appendix A.1, we generate images with in-
creasing attribute specification for each artifact with three
T2I systems, Stable Diffusion 1.5, Stable Diffusion 3.5
Large, and FLUX.1 [dev]. The prompts used are P (n),
P ({n, c}), P ({n, r}), and P ({n, c, r}) from Tab. 6.

We discuss in ablation to visually examine how our PS
scorers capture T2I system performance in the cultural head
and long tail in Appendix F.1. We also discuss qualita-
tive examples from the CuRe dataset and how our PS scor-
ers rate artifacts when compared to user judgments in Ap-
pendix F.2.

F.1. Perceptual Similarity as a Long Tail Predictor
For each T2I system fθ, in Fig. 17 we show a scatter plot of
raw perceptual similarity scores ϕGT and ϕPS for all 50 cul-
tural artifacts belonging to each supercategory s. For each
artifact, we plot two scores: ϕ(n) and argmax ϕ(a), i.e.
the highest similarity score across the other three prompts.
To examine if the head and tail of the distribution of PS
scores correlate with the Global North / South divide, we
also color each point according to whether the region the
artifact belongs to lies in the Global North (red) or South
(black). Below we discuss the “spread” or visual divergence
in scores between ϕ(n) and argmax ϕ(a) as well as “cul-
tural outlier”, i.e. points with a high spread in the head or
points with a low spread in the tail.

As seen in Fig. 17, we observe a spread of scores in
the tail across T2I systems for both scorers ϕGT and ϕPS ,
though the starting point and magnitude of spread (vertical
height) differs by supercategory. ϕGT tends to have a lower
spread than ϕPS , with fewer outliers. All T2I systems have
very few outliers in the head (i.e. points with high spread),
while there tend to be many more outliers in the tail, i.e.
points with low spread (e.g. for Art and People.) People
has the least spread across all T2I systems, which is intu-
itive as there is a very specific way that a certain individual
looks, and thus perceptual similarity tends not to change
with attribute specification. Interestingly, even though Ar-
chitecture and Art are similarly also singular named enti-
ties (i.e. minimal intra-artifact variance in visual features),
we observe a later starting point with occasionally large
spread (e.g. only in the last 10 to 15 artifacts). Food, Fash-
ion and Celebrations have in general the widest spread, as
there is generally large intra-class diversity / variance as to
how culture-specific food preparations, clothing, and cele-
brations looks visually. DALL-E 3 (Fig. 17e) appears to be
the most homogenous in perceptual similarity, as the spread
is much lesser than other T2I systems, even for Food.

For a more fine-grained analysis than a Global North /
South divide, we also examine PS scores across each region
(country) in the CuRe dataset in Appendix F, grouped by
continent. To measure CuRe of a T2I system fθ for region

r, we compute an average score over the set of cultural arti-
facts associated with the region, Nr. That is,

CuRe(ϕ; fθ, r) =
1

|Nr|
∑
n∈Nr

ϕ
(
I
)
.

We observe that when aggregated, outside of North
America, no scorer is able to capture the clear trend in hu-
man judgments of cultural representativeness ϕ∗

CuRe. This
indicates that whether a cultural artifact lies in the head or
tail of the T2I system distribution cannot be indicated purely
by membership to a global region.

F.2. Qualitative Analysis of PS Scorers
We highlight several qualitative examples on the CuRe
dataset with our perceptual similarity scorers ϕPS and
∆ϕPS compared to the strong baseline scorer ϕGT (n) in
Fig. 18. We also show Likert scores for cultural representa-
tiveness ϕ∗

CuRe and textual justification for each example.
As we observed in our quantiative results (Tab. 2),

our divergence PS scorer ∆ϕPS({n, c}) correlates strongly
(and negatively) with the ϕ∗

CuRe gold scores, i.e. low
∆ϕPS({n, c}) indicating higher ϕ∗

CuRe, e.g. E1 (Bayt al-
Suhaymi), E2 (Moai), E3 (George Lucas). We also high-
light a failure case for our scorers with E4 (Talları́n
saltado), a type of noodle dish from Peru generated by SD
1.5. While we expect a low ∆ϕPS score to correspond to
high cultural representativeness, workers rate a low ϕ∗

CuRe

score of 1 out of 5 and indicate errors with textual response,
i.e. incorrect ingredients and out-of-place textures. ϕPS

also did worse than the baseline ϕGT (n) as it gave a higher
perceptual similarity score (falsely predicting high quality
T2I output). This failure aligns with our quantitative rank
correlation analysis in Tab. 2, where we observe very Spear-
man’s ρ for SD 1.5, an older and smaller T2I system.

We also highlight two cases where both our proposed
scorers and the baseline scorer fail. E5 (Blocos carnavale-
scos de São Paulo), a carnival celebration from Brazil, had
a 1 out of 5 ϕ∗

CuRe for SD 3.5 Large. The written feedback
also reflects that the images are sterotypically extravagant
and incorrect in physical appearance. However, the quan-
titative perceptual similarity scorers were very high com-
pared to other artifacts with the same low ϕ∗

CuRe score. In
contrast, E6 (Hmong textile art), a style of embroidery from
Vietnam had an excellent 5 out of 5 ϕ∗

CuRe for SD 3.5 Large,
but lower scores from the quantitative PS scorers than E5
which was much less culturally representative according to
human judgments.

F.3. PS vs Concept Frequency
In Tab. 15 we show the Spearman rank correlation of the fre-
quency the artifact name appears in the captions of LAION-
SD1.5 (the pretraining dataset of Stable Diffusion 1.5; de-
tails in Appendix E) and the perceptual similarty scores
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Table 14. Perceptual similarity CuRe scores of all regions in the CuRe dataset, sorted descending by user study scores ϕ∗
CuRe. The scores

are averaged across Flux.1 [dev], SD 3.5 Large, SD 1.5, and SDXL T2I systems and SigLIP2, AIMV2, and DINOv2 encoders.

Continent Region Perceptual Similarity Scorer
ϕ∗
CuRe ↑ ϕGT (n) ↑ ϕPS(n) ↑ ∆ϕPS({n, c}) ↓ ∆ϕPS({n, c, r}) ↓

Africa

Egypt 3.24 ± 0.88 0.72 ± 0.54 0.62 ± 0.44 0.52 ± 0.35 0.51 ± 0.33
Nigeria 2.96 ± 0.91 0.72 ± 0.52 0.64 ± 0.49 0.51 ± 0.44 0.51 ± 0.44

Morocco 2.80 ± 1.21 0.64 ± 0.16 0.62 ± 0.19 0.55 ± 0.22 0.55 ± 0.25
Algeria 2.72 ± 0.87 0.56 ± 0.04 0.57 ± 0.07 0.56 ± 0.11 0.57 ± 0.11
Ghana 2.69 ± 0.90 0.59 ± 0.16 0.59 ± 0.17 0.55 ± 0.25 0.53 ± 0.22

South Africa 2.53 ± 1.10 0.64 ± 0.13 0.63 ± 0.14 0.55 ± 0.14 0.54 ± 0.12
Ethiopia 2.28 ± 0.30 0.61 ± 0.11 0.62 ± 0.11 0.54 ± 0.20 0.54 ± 0.15

Zimbabwe 2.22 ± 0.03 0.77 ± 0.05 0.69 ± 0.07 0.49 ± 0.02 0.50 ± 0.02
Tunisia 1.74 ± 0.29 0.50 ± 0.05 0.53 ± 0.06 0.63 ± 0.14 0.63 ± 0.15

Asia

India 3.91 ± 0.65 0.69 ± 0.72 0.65 ± 0.55 0.52 ± 0.46 0.51 ± 0.45
Malaysia 3.33 ± 0.22 0.74 ± 0.07 0.78 ± 0.04 0.51 ± 0.02 0.51 ± 0.02
Pakistan 3.02 ± 0.85 0.76 ± 0.31 0.61 ± 0.20 0.50 ± 0.11 0.50 ± 0.14

Indonesia 2.88 ± 0.83 0.66 ± 0.53 0.63 ± 0.46 0.53 ± 0.49 0.53 ± 0.54
Iran 2.86 ± 1.00 0.61 ± 0.24 0.56 ± 0.17 0.55 ± 0.26 0.55 ± 0.23

Philippines 2.77 ± 0.69 0.64 ± 0.37 0.60 ± 0.26 0.54 ± 0.34 0.54 ± 0.36
Japan 2.72 ± 1.45 0.65 ± 0.21 0.61 ± 0.23 0.55 ± 0.23 0.54 ± 0.23
China 2.67 ± 0.76 0.65 ± 0.56 0.62 ± 0.44 0.53 ± 0.48 0.53 ± 0.47

Lebanon 2.67 ± 0.52 0.72 ± 0.04 0.76 ± 0.06 0.49 ± 0.02 0.51 ± 0.05
Thailand 2.25 ± 0.83 0.67 ± 0.04 0.66 ± 0.07 0.55 ± 0.06 0.54 ± 0.06

Israel 2.44 ± 0.25 0.70 ± 0.06 0.71 ± 0.13 0.48 ± 0.12 0.49 ± 0.10
Korea 2.42 ± 0.81 0.66 ± 0.20 0.63 ± 0.14 0.53 ± 0.17 0.53 ± 0.12

Vietnam 2.14 ± 1.23 0.59 ± 0.13 0.59 ± 0.13 0.54 ± 0.14 0.54 ± 0.16
Bangladesh 2.11 ± 1.11 0.53 ± 0.08 0.55 ± 0.09 0.59 ± 0.13 0.58 ± 0.16
Afghanistan 1.89 ± 0.32 0.80 ± 0.02 0.59 ± 0.03 0.50 ± 0.01 0.50 ± 0.01

Singapore 1.89 ± 0.17 0.79 ± 0.02 0.70 ± 0.04 0.53 ± 0.04 0.52 ± 0.04

Europe

Slovenia 3.41 ± 0.19 0.63 ± 0.08 0.63 ± 0.09 0.57 ± 0.06 0.56 ± 0.07
Czech Republic 3.28 ± 0.94 0.73 ± 0.05 0.69 ± 0.06 0.51 ± 0.05 0.52 ± 0.04

Switzerland 3.19 ± 0.92 0.61 ± 0.08 0.62 ± 0.11 0.51 ± 0.12 0.50 ± 0.09
United Kingdom 3.14 ± 0.70 0.74 ± 0.52 0.62 ± 0.41 0.51 ± 0.28 0.51 ± 0.30

Denmark 3.11 ± 1.28 0.59 ± 0.05 0.58 ± 0.04 0.58 ± 0.08 0.57 ± 0.07
Germany 3.11 ± 1.14 0.62 ± 0.24 0.58 ± 0.14 0.56 ± 0.20 0.56 ± 0.18
Norway 3.11 ± 0.10 0.57 ± 0.05 0.59 ± 0.03 0.55 ± 0.06 0.55 ± 0.05

Italy 3.01 ± 1.46 0.70 ± 0.35 0.66 ± 0.39 0.53 ± 0.36 0.53 ± 0.28
Netherlands 3.00 ± 1.58 0.64 ± 0.12 0.58 ± 0.10 0.55 ± 0.14 0.55 ± 0.26

Poland 3.00 ± 0.93 0.63 ± 0.12 0.61 ± 0.18 0.53 ± 0.22 0.54 ± 0.21
France 2.98 ± 1.28 0.69 ± 0.23 0.66 ± 0.24 0.52 ± 0.24 0.52 ± 0.25
Russia 2.83 ± 0.58 0.68 ± 0.22 0.65 ± 0.07 0.54 ± 0.05 0.54 ± 0.05
Greece 2.73 ± 1.51 0.69 ± 0.17 0.64 ± 0.30 0.53 ± 0.28 0.53 ± 0.20

Belgium 2.72 ± 0.53 0.71 ± 0.18 0.64 ± 0.17 0.50 ± 0.12 0.50 ± 0.28
Spain 2.62 ± 0.76 0.68 ± 0.44 0.63 ± 0.31 0.52 ± 0.29 0.52 ± 0.28

Portugal 2.60 ± 1.74 0.61 ± 0.03 0.59 ± 0.06 0.56 ± 0.05 0.57 ± 0.07
Austria 2.52 ± 1.24 0.62 ± 0.09 0.62 ± 0.11 0.53 ± 0.20 0.53 ± 0.15

Slovakia 2.41 ± 0.76 0.66 ± 0.15 0.64 ± 0.17 0.54 ± 0.13 0.53 ± 0.17
Hungary 2.33 ± 0.52 0.68 ± 0.03 0.71 ± 0.04 0.51 ± 0.02 0.51 ± 0.02
Romania 2.33 ± 0.22 0.61 ± 0.03 0.60 ± 0.02 0.58 ± 0.05 0.59 ± 0.04

Croatia 2.22 ± 0.47 0.53 ± 0.01 0.56 ± 0.02 0.60 ± 0.05 0.58 ± 0.03
Finland 2.20 ± 0.63 0.65 ± 0.26 0.64 ± 0.24 0.51 ± 0.18 0.52 ± 0.34
Turkey 2.19 ± 0.40 0.66 ± 0.10 0.67 ± 0.24 0.53 ± 0.21 0.52 ± 0.37

Sweden 2.09 ± 0.82 0.67 ± 0.11 0.63 ± 0.11 0.53 ± 0.14 0.53 ± 0.14
Ukraine 1.74 ± 0.61 0.52 ± 0.07 0.56 ± 0.09 0.60 ± 0.18 0.58 ± 0.15
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Continent Region Perceptual Similarity Scorer
ϕ∗
CuRe ↑ ϕGT (n) ↑ ϕPS(n) ↑ ∆ϕPS({n, c}) ↓ ∆ϕPS({n, c, r}) ↓

North America

United States 3.46 ± 0.99 0.73 ± 0.87 0.66 ± 0.84 0.51 ± 0.75 0.51 ± 0.71
Canada 3.30 ± 0.43 0.66 ± 0.07 0.73 ± 0.16 0.50 ± 0.12 0.50 ± 0.09
Mexico 2.89 ± 1.30 0.66 ± 0.45 0.68 ± 0.61 0.52 ± 0.55 0.52 ± 0.53

Puerto Rico 2.56 ± 0.17 0.50 ± 0.01 0.51 ± 0.01 0.67 ± 0.03 0.65 ± 0.05
Costa Rica 1.44 ± 0.40 0.60 ± 0.02 0.67 ± 0.06 0.54 ± 0.07 0.55 ± 0.04

Oceania Australia 2.87 ± 1.18 0.66 ± 0.16 0.69 ± 0.22 0.52 ± 0.17 0.52 ± 0.18
New Zealand 2.78 ± 0.88 0.62 ± 0.12 0.62 ± 0.12 0.54 ± 0.10 0.53 ± 0.10

South America

Brazil 3.11 ± 1.15 0.65 ± 0.51 0.66 ± 0.54 0.51 ± 0.55 0.51 ± 0.56
Venezuela 2.89 ± 0.32 0.48 ± 0.02 0.55 ± 0.03 0.60 ± 0.05 0.61 ± 0.05

Chile 2.85 ± 0.49 0.74 ± 0.43 0.63 ± 0.23 0.51 ± 0.16 0.51 ± 0.20
Argentina 2.40 ± 1.40 0.72 ± 0.08 0.68 ± 0.09 0.52 ± 0.09 0.51 ± 0.08

Peru 2.29 ± 1.02 0.58 ± 0.21 0.62 ± 0.30 0.54 ± 0.31 0.53 ± 0.37
Colombia 2.11 ± 0.56 0.64 ± 0.17 0.62 ± 0.18 0.54 ± 0.18 0.53 ± 0.14

Ecuador 1.67 ± 0.00 0.54 ± 0.02 0.53 ± 0.02 0.62 ± 0.09 0.60 ± 0.08

Table 15. Spearman’s ρ between frequency count of each artifact
name in LAION-SD15 (see Appendix E) and perceptual similarity
scorers ϕGT (n) and ϕPS(n) evaluated on the CuRe dataset.

Encoder SD 1.5 SD 3.5 Large SDXL Flux.1 [dev]
ϕGT ϕPS ϕGT ϕPS ϕGT ϕPS ϕGT ϕPS

SigLIP 2 [63] 0.64 0.22 0.58 0.34 0.55 0.25 0.60 0.37
AIMV2 [20] 0.53 -0.08 0.52 0.25 0.42 0.08 0.49 0.33
DINOv2 [43] 0.57 0.25 0.56 0.40 0.46 0.29 0.55 0.45

ϕGT (n) and ϕPS(n), which use images generated with the
prompt only containing the artifact name. For ϕGT (n), SD
1.5 has the highest positive correlation out of all T2I sys-
tems across encoders, which is expected as we evaluate
frequency over its exact pretraining dataset. On the con-
trary for ϕPS(n), Spearman’s rank correlation to concept
frequency in LAION-SD15 followed Arena ELO rankings,
i.e. FLUX.1 [dev] > SD 3.5 Large > SDXL > SD 1.5.
This likely indicates that artifact - category associations for
stronger T2I systems like FLUX.1 [dev] and SD 3.5 were
reinforced by the larger size and coverage of their pretrain-
ing data.
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(a) FLUX.1 dev

(b) Stable Diffusion 3.5 Large

(c) Stable Diffusion 1.5

(d) Stable Diffusion XL
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(e) DALL-E 3

Figure 17. Scatter plots of Left: ϕGT (a) and Right: ϕPS(a) for 50 artifacts from all 6 supercategories in the CuRe dataset generated
using FLUX.1 [dev]. Each data point represents a single cultural artifact, and is an average of the scores for each T2I generated seed.
All images are encoded with SigLIP 2. We plot ϕGT (n) and ϕPS(n) with an “x” marker, while highest similarity score amongst all four
prompt styles (P (n), P (n, c), P (n, r), P (n, c, r) has the “o” marker. The colors indicate whether the region the artifact belongs to lies in
the Global North (red) or Global South (black). Artifacts are sorted by descending ϕPS(n) similarity score, i.e. our marginal attribution
score. As seen in the figure, there is a noticable divergence of perceptual similarity score of the most underspecified (P (n)) from the “best”
prompt in the long tail, across T2I systems.
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E# AI Image Real Image Feedback PS Scorers

E1

Bayt al-Suhaymi

1. The trees used looks so weird as its mimicing a dome shape.
some of the small blue domes are futher apart than others.
asymtrical look

2. There is a lot of Dom’s typicaly there is only one in any
building, this picture represent a mosque more than a normal
building, also the Dom’s can’t be made from trees

ϕ∗
CuRe = 2.0/5

ϕGT (n) = 0.654

ϕPS(n) = 0.580

∆ϕPS(n, c) = 0.552

∆ϕPS(n, c, r) = 0.506

E2

Moai

1. the head to body ratio is a bit off, the body should either be
more elongated or the head bigger, some even had some kind of
red hat and they all looked to the ocean.

2. The main thing that I think is inaccurate is that the moai in the
image looks too perfect and the real ones have a lot of damage due
to nature.

ϕ∗
CuRe = 4.0/5

ϕGT (n) = 0.808

ϕPS(n) = 0.581

∆ϕPS(n, c) = 0.486

∆ϕPS(n, c, r) = 0.486

E3

George Lucas

1. This is a closeup picture of George Lucas’ face. There’s nothing
particularly unique about it that would NOT make it apart of my
culture. I don’t see why I couldn’t see this kind of photo in my
culture.

2. I do not see anything that is ”wrong” other than the eyes. They
are obviously AI.

ϕ∗
CuRe = 5.0/5

ϕGT (n) = 0.745

ϕPS(n) = 0.571

∆ϕPS(n, c) = 0.489

∆ϕPS(n, c, r) = 0.460

E4

Talları́n saltado

1. the noodles look like worms, talları́n saltado is spaghetti with
meat and vegetables whereas the image only shows weird pasta
and no meat nor onions/tomatoes.

2. The image doesn’t look like noodles to me, it seems like a kind
of vegetable so I can’t say is accurate to the real Talları́n saltado

ϕ∗
CuRe = 1.0/5

ϕGT (n) = 0.654

ϕPS(n) = 0.696

∆ϕPS(n, c) = 0.486

∆ϕPS(n, c, r) = 0.425

E5

Blocos carnavalescos de São Paulo

1. The costumes are indeed carnival like, but the blocos are less
stravagant and the costumes wore by the people usualy contain
some kind of a joke on a very low budget costume

2. Their physical appearance and posture.

ϕ∗
CuRe = 1.0/5

ϕGT (n) = 0.712

ϕPS(n) = 0.757

∆ϕPS(n, c) = 0.504

∆ϕPS(n, c, r) = 0.473

E6

Hmong textile art

1. The design motif and colors are quite close to the real ones

2. I think the repetitive patterns and the colourful decoration make
it accurate

ϕ∗
CuRe = 5.0/5

ϕGT (n) = 0.620

ϕPS(n) = 0.634

∆ϕPS(n, c) = 0.519

∆ϕPS(n, c, r) = 0.518

Figure 18. Visualization of quantitative perceptual similarity (PS) scorers and user study CuRe scores and text feedback (Appendix C.4).
The first two artifacts were generated with FLUX.1 [dev], the second two with SD 1.5, and the last two with SD 3.5 Large.
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G. Image-Text Alignment
We examine in important factor in the context of image-text
alignment scorers in Appendix G.1: what impact does the
choice of vision-language model backbone have on scorer
quality? We also discuss qualitative examples with ITA
scorers in Appendix G.2.

Table 16. List of prompts used for text-image similarity score cal-
culations. e.g. for region r = ”Australia”, the T2I prompt P (r) =
“An image from Australia”.

Scorer Prompt
Khanuja et al. [31] “This image is culturally relevant to {r}.”
Ventura et al. [65] “Image from {r} culture.”
o3 mini [42] “Assess the image’s cultural representation of {r}.”
P (n) “An image of {n}.”
P (c) “An image of {c}.”
P (r) “An image from {r}.”
P (c, r) “An image of {c} from {r}.”

G.1. Choice of ITA Scorer’s VLM Backbone

Table 17. Spearman correlation values of ITA scorers with hu-
man judgments of perceptual similarity ϕ∗

PS across ITA scorer
backbones for FLUX.1 [dev]. The backbones we evaluate include
SigLIP 2 and OpenCLIP models trained on OpenAI WIT [47],
Data Filtering Networks (DFN-5B) [19], LAION-2B [56], and
DataComp (DC-1B) [22].

ITA Scorer LAION-2B WIT DFN-5B SigLIP 2 DC-1B

Khanuja et al. [31] 0.18 0.16 0.12 0.11 0.12
Ventura et al. [65] 0.16 0.09 0.16 0.14 0.16
o3-mini 0.17 0.17 0.13 0.14 0.15

sim
(
I(n), P (n)

)
0.35 0.39 0.41 0.38 0.37

sim
(
I(n), P (c)

)
0.33 0.38 0.35 0.34 0.31

sim
(
I(n), P (r)

)
0.16 0.09 0.17 0.12 0.13

sim
(
I(n), P (c, r)

)
0.37 0.39 0.38 0.38 0.34

ϕITA(c) 0.39 0.43 0.43 0.40 0.39
ϕITA(r) 0.32 0.32 0.37 0.35 0.33
ϕITA(c, r) 0.40 0.43 0.44 0.42 0.40

We replicate the Spearman rank correlation setup from
Tab. 3 and ablate over the choice of VLM backbone used to
compute image-text alignment for FLUX.1 [dev] in Tab. 17
(see Sec. 5.4 for VLM details). To recap, we compute a
Spearman’s ρ of each scorer with the user study gold score
ϕ∗
PS . We observe that baselines (Khanuja et al. [31], Ven-

tura et al. [65], and o3 mini [42]), which query the VLM for
CuRe score directly with region information r, are sensitive
to changes in the backbone and show high variability in ITA
scores. As we marginally increase attributes in the evalua-
tion prompt P (n → c, n → r, n → {c, r}), the rank cor-
relations become more consistent across VLM backbones.

Our proposed metrics show both higher and more consis-
tent rank correlations with ϕ∗

PS gold scores across all VLM
backbones, showing that they are more robust than base-
lines to the pretraining distribution of the VLM for evaluat-
ing cultural representativeness.

G.2. Qualitative Analysis of ITA Scorers
We highlight several qualitative examples on the CuRe
dataset of our ITA scorer ϕITA(c, r) compared to baselines
in Fig. 19 using SigLIP 2 as the VLM backbone. We also
show Likert scores for cultural representativeness ϕ∗

CuRe

and textual justification for each example.
Throughout our evaluation, we treat user judgments as

the gold standard, assessing scorers based on how well they
replicate human feedback. E5 (Zwölf Glaubensartikel) is
a rare case where users were unfamiliar with the artifact
itself, leading to a high ϕ∗

cure based primarily on regional
similarity. Since the AI-generated and real images differ
in category, the ϕITA(c, r) score is correspondingly low,
reflecting this mismatch.

As seen in E1 (Bangles), our proposed metric ϕITA(c, r)
aligns more closely with user preferences compared to ex-
isting baseline scorers. Our proposed metric proves partic-
ularly robust in scenarios where the T2I system generates
outputs that are categorically incorrect. In E3 (Jalangkote),
SD 3.5 Large generates an image of architecture rather than
food, a failure undetected by baseline metrics that focus
narrowly on regional resemblance. From a user perspec-
tive, representativeness encompasses not only regional cues
but also correct category and item-level semantics, an area
where our marginal information attribution scorer provides
more robust signal.

We also highlight some failure cases of our ITA scorer.
E4 (Puchner Mansion) shows a case where baseline scor-
ers better approximated human judgments than ϕITA(c, r),
suggesting that in some cases, the baselines’ focus on
broader stylistic features may offer advantages. In E6
(Michelle Bachelet), our proposed ϕITA(c, r) captures se-
mantic representativeness by integrating category and re-
gion cues, but does not account for image quality. Users
tend to penalize low-quality or unrealistic images regard-
less of semantic alignment, which our scorer overlooks.
E2 (Festival de la Primavera) demonstrates a failure case
across all ITA-based scorers which fail to capture culturally
specific or context-dependent cues (region inconsistency,
incorrect details of the parade).

Note on Worker Reliability: While most participants
provided thoughtful and culturally grounded feedback, a
few responses reflected exasperation with AI-generated out-
puts in general, including calls to “stop this”. This high-
lights an important meta-issue regarding images created by
T2I systems, i.e. a subjectivity and heterogeneity of opin-
ions towards T2I systems themselves.
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E# AI Image Real Image Feedback ITA Scorers

E1

Bangles

1. Bangles are circular ornaments with some colors and patterns
on them.

2. The width and the carvings and the colors make it seem more
aligned to my culture

ϕ∗
CuRe = 5.0/5

Khanuja et al. [31] = 0.060

Ventura et al. [65] = 0.045

ϕITA(c, r) = 0.124

E2

Festival de la Primavera

1. The festival takes place in the cost of Lima, no there are not a
lot of hilly areas, and it’s more a dry environment so those flowers
and the place do not correspond at all to Trujillo reality.

2. The image represents the Spring in general. But the main event
of the Festival de la Primavera is the parade (People, carriages
and flowers).

ϕ∗
CuRe = 1.0/5

Khanuja et al. [31] = 0.086

Ventura et al. [65] = 0.067

ϕITA(c, r) = 0.156

E3

Jalangkote

1. The image use the wrong thing, AI image is using stone like
building while Jalangkote is a food. a complete different genre

2. The AI image is not even a food.

ϕ∗
CuRe = 1.7/5

Khanuja et al. [31] = 0.112

Ventura et al. [65] = 0.093

ϕITA(c, r) = 0.022

E4

Puchner Mansion

1. It’s style is just all wrong. it looks more like something an
american would think of as a castle. can we stop trying to make ai
image gen happen?

2. I feel like the AI focused too much on the word Mansion, and
especially the american/older british kind.

ϕ∗
CuRe = 1.3/5

Khanuja et al. [31] = 0.040

Ventura et al. [65] = 0.053

ϕITA(c, r) = 0.096

E5

Zwölf Glaubensartikel

1. Overall the vegitation seems possible to find in my country

2. This image could be a shot from above of some forest in my
country.

ϕ∗
CuRe = 4.7/5

Khanuja et al. [31] = 0.108

Ventura et al. [65] = 0.091

ϕITA(c, r) = 0.079

E6

Michelle Bachelet

1. The image doesn’t have the exact facial features of Michelle
Bachelet. She’s a well known Chilean politician, so a lot of people
recognize her face. The image looks too fat and the hair is wrong.

2. Its the features of the face, they are not completly wrong, but
together they make a face who cant be taken to be Bachelet, also
the hair looks really fake.

ϕ∗
CuRe = 2.0/5

Khanuja et al. [31] = 0.066

Ventura et al. [65] = 0.054

ϕITA(c, r) = 0.164

Figure 19. Visualization of quantitative Image-Text Alignment (ITA) scorers, user study CuRe scores and text feedback. The first two
artifacts were generated with FLUX.1 [dev], the second two generated with SD 3.5 Large, and the last two generated with SD 1.5.
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H. Diversity
We compute two notions of diversity: a) intra-artifact,
over T2I generations with multiple random seeds for a sin-
gle cultural artifact n; b) intra-category, over T2I genera-
tions of multiple random seeds for a single cultural category
c. We discuss motivating examples for these two separate
notions in Sec. 4.4). Details for seeding for different T2I
systems is provided in Appendix A.1.

LPIPS. A high LPIPS [76] score indicates high intra-
artifact variance in patchwise image features across seeds,
which is interpreted as high diversity. We compute LPIPS
for a category c in our CuRe dataset as an average of scores
of all artifacts n associated with category c, i.e.

LPIPS(c) =
1

|c|
∑
n∈c

ϕ
(
I(n)

)
.

Vendi Scores. Vendi Scores (VS) [21, 30] define a simi-
larity measure via a kernel over selected attributes (e.g. r =
{Country, Continent}). While computing VS, each seed j
of an image of a cultural category I(c) is assigned a pre-
dicted label based on its “closest” image in the set of cul-
tural artifacts n belonging to category c to compute intra-
category diversity, i.e.

n̂(I(c)j) = argmax
n∈c

sim
(
I(c), I(n)

)
.

A j × j kernel similarity matrix is then computed based
on a selected attribute (see Experimental Setup of Kannen
et al. [30] for details). The primary drawback of VS as a
scorer is that its quality depends entirely on this initial as-
signment n̂ and choice of kernel, which in turn depends on
the image encoder used to compute sim.

H.1. Diversity as a Long Tail Predictor
We examine if we can use diversity as a predictor of a cul-
tural artifact lying in the head or long tail of a T2I system’s
distribution over generated images, similar to our marginal
attribution lens over perceptual similarity (Sec. 4.2). Recall
from Eq. (4) that our ϕDIV scorer compute LPIPS diversity
over a set of images generated across attribute specification
levels:

ϕDIV = LPIPS
(
{n}, {n, c}, {n, r}, {n, c, r}

)
We expect that in the long tail, a larger marginal increase

in information n → a will cause a large increase in diver-
sity, as there will be a larger visual difference between im-
ages generated with different attributes I(n) → I(a) (as
seen with the “Banku” artifact in Fig. 3). Intuitively, this
evaluates how much diversity changes when we mix images
of “Banku” with images of “Banku, a type of dumpling”,

images of “Banku, from Ghana”, and images of “Banku, a
type of dumpling from Ghana”. If it is relatively unchanged,
we predict it to lie in the head of the supercategory artifact
distribution.

To test this hypothesis, we compute the marginal in-
crease in information as divergence of ϕDIV from an LPIPS
over only images generated with a = {n}, i.e.

∆ϕDIV = ϕDIV − LPIPS(n)

We visualize this marginal increase ∆ϕDIV on the
CuRe dataset by grouping cultural artifacts into two buckets
as proxies for the head and long tail: artifacts belonging to
regions from the global north and global south. We average
∆ϕDIV over all artifacts belonging to each bucket for each
supercategory s, and show a bar plot for all T2I systems in
Fig. 20.

We observe two clusters of T2I sytem behavior with our
scorer: in the first cluster, FLUX.1 [dev] and SD 3.5 large
(the highest quality T2I systems per Arena Bench ELO,
Tab. 5) show higher change in diversity with increasing in-
formation in the Global South (proxy for long tail) than
the Global North (proxy for head) across supercategories,
which aligns with our hypothesis given our assumed prox-
ies. In the second cluster, Ideogram 2.0, Stable Diffusion
XL and DALL-E 3, this behavior is reversed, except for
architecture and people for SDXL and DALL-E 3 (which
has a high 66.5% refusal rate for generating images of peo-
ple due to inbuilt safety filters, see Appendix A.2). Stable
Diffusion 1.5 is the weakest T2I system, and follows sim-
ilar trends to the second cluster, except for Art. Architec-
ture consistently has higher divergence in the Global North
than the South, across T2I systems, which we suspect is
due to the inherent lack of diversity in generations of spe-
cific named entities, i.e. low intra-artifact variance (a similar
problem to art and people).

In summary, our proposed scorer ϕDIV can thus predict
where in its learned distribution an image generated by a
T2I system lies, i.e. in the head or long tail. We note our pre-
assigned clustering of global north and south is just one ex-
ample proxy for head and long tail. We note while our scorer
requires generating multiple seeds of images with different
attribute specification levels (practically, four seeds across
four styles = 16 total images), it is still relatively cheaper to
compute when compared to computing artifact frequency
over a large pretraining dataset via string matching, such as
in Parashar et al. [44], which we discuss in more detail in
Appendix E.

H.2. Qualitative Analysis of DIV scorers
We highlight several qualitative examples on the CuRe
dataset of our DIV scorer ϕDIV compared to baselines in
Fig. 21. In alignment with our quantitative observations
in Appendix H.1, in the examples E2 (“Hokkien Mee”),
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(a) FLUX.1 [dev] (b) SD 1.5 (c) SD 3.5 Large

(d) SDXL (e) Ideogram 2.0 (f) DALL-E 3

Figure 20. A bar plot of ∆ϕDIV across all artifacts in the CuRe dataset aggregated at the supercategory level (mean + std error bar) for
each T2I system in our evaluation set. We separate each bar at the supercategory level into artifacts belonging to the Global North (GN)
and Global South (GS) to examine if there is a noticeable discrepancy between scores in these clusters.

E3 (“Third Mainland Bridge”), E4 (“Rabat Lighthouse”)
and E5 (“Penelope Cruz”), all diversity scorers show an in-
verse relationship to human judgments of cultural represen-
tativeness ϕ∗

CuRe. These examples have high human scores
for cultural representativeness phi∗CuRe and show very lit-
tle change in diversity score from LPIPS(n) to ϕDIV , in-
dicating that attribute specification does not increase di-
versity significantly and the artifact likely lies in the head
of the T2I system distribution, which aligns with our hy-
pothesis in Sec. 4.4. We highlight failure cases where the
baseline LPIPS(n) outperforms our scorer ϕDIV in E1
(“Ushabti”) and E6 (“Vaso de los Guerrero”), where for a
low ϕ∗

CuRe, the baseline shows a higher diversity score and
accurately matches the inverse relationship. We suspect that
the factuality-diversity tax especially hurts handicrafts like
pottery, where coarse semantic features may be accurate
(shape, structural outline) but finer details are wrong (e.g.
facial features and material in E1 and material and textures
in E6.)
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E# AI Image Real Image Feedback Score

E1

Ushabti

1. This image has used a different facial feature of the statue you
would not see in my country of culture. Although, the wear and tear
as well as the shape of the statue being mummy-like would be found
in my country.

2. The similarities lies in the cat structure generally. The material it
is made of and the type of cloth it seems to be wearing. The part
where it is different from my culture is that the eyes are looking at the
side which is very unlikely. Moreover, the smile itself is so not true.
The big differences lie in the eyes direction and the smile.

ϕ∗
CuRe = 1/5

LPIPS(n) = 0.62

ϕDIV = 0.48

E2

Hokkien Mee

1. Should have less liquid sauce. May need to add shrimps. The
noodle should be fried.

2. The noodles in the AI image looks weird and too smooth/plump
compared to real noodle dishes. Each individual strand can be traced
which seems unlikely in a real noodle image

ϕ∗
CuRe = 4/5

LPIPS(n) = 0.70

ϕDIV = 0.59

E3

Third Mainland Bridge

1. The image contains the distinctive part of the real location and
image, it contains most of the details of the real thing.

2. The inaccurate details is The Number of Lanes. The image shows
more or fewer lanes than the actual four lanes. The image inaccurately
represents the bridge structural elements such.

ϕ∗
CuRe = 4.5/5

LPIPS(n) = 0.50

ϕDIV = 0.50

E4

Rabat Lighthouse

1. The catholic or christian cross

2. I think gen AI did a good job here, but missed some details like the
big square in front of the lighthouse and the window’s sizes are
somewhat big here

ϕ∗
CuRe = 5/5

LPIPS(n) = 0.51

ϕDIV = 0.54

E5

Penelope Cruz

1. The facial features are very similar to the real ones

2. The hair is typical of any country, so it could as well be spanish.
The white clothes is typical mediterranean.

ϕ∗
CuRe = 4/5

LPIPS(n) = 0.74

ϕDIV = 0.62

E6

Vaso de los Guerrero

1. The AI-generated image looks too unreal; it doesn’t feel natural, as
if it was too exaggerated

2. The image has floral filigrees and not warriors. The decorations are
in relief and not painted. In addition, the vessel is lacquered with gloss

ϕ∗
CuRe = 2/5

LPIPS(n) = 0.75

ϕDIV = 0.55

Figure 21. Diversity scorer and user feedback
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I. MLLM as a Judge

To our knowledge for the first time, we evaluate a state-
of-the-art multimodal large language model (MLLM) for
its ability to emulate human judgments (Likert scores) of
CuRe and perceptual similarity to ground-truth and its abil-
ity to provide accurate textual justifications for its scores in
Appendix I.1. We choose the recent Gemini 2.0 Flash [15],
a popular yet efficient proprietary state-of-the-art MLLM.
We discuss qualitative examples of Gemini 2.0 Flash scores
and justifications on artifacts from the CuRe dataset and
highlight several shortcomings and areas for improvement
in Fig. 22b.

Gemini Prompt for Perceptual Similarity:

You will be shown two images below. The image
on the left is an AI-generated image of {item name}
({category name}). The image on the right is a grid
of four real images of {item name} from Wikipedia.
Generated Image (Left):
[Image 1 Placeholder - will be inserted by API call]
Real Images Collage (Right):
[Image 2 Placeholder - will be inserted by API call]
Please analyze the images and answer the following:
1. On a scale of 1-5, how similar do you think the
generated image on the left is to the real images on
the right? Use the following scale:

1: Not at all similar
2: Slightly similar
3: Reasonably Similar
4: Very Similar
5: Extremely Similar

2. Provide a brief explanation for your similarity
rating, detailing specific visual aspects you com-
pared.
Format your response strictly as JSON with the keys
”similarity rating” (for the number 1-5) and ”simi-
larity explanation” (for the text explanation).

Example Response from Gemini:
{

”similarity rating”: 4,
”similarity explanation”: ”The generated image

captures the overall shape and key architectural el-
ements seen in the real images, like the arches and
towers, but lacks some finer texture details and the
surrounding environment differs.”
}

I.1. Gemini 2.0 Flash as a Scorer

As Gemini 2.0 Flash is a multimodal LLM, it can be
queried for complex and nuanced visual-question answer-

ing (VQA), such as directly querying for cultural represen-
tativeness and perceptual similarity scores. We thus repli-
cate our user study setup and questionnaire structure (Ap-
pendix C) with Gemini.

Perceptual Similarity. Similar to our user study setup in
Fig. 8 (Appendix C.2), we query Gemini for perceptual sim-
ilarity (Q1a) over all artifacts in the CuRe dataset by show-
ing Gemini one image generated by our T2I system, and a
grid of four ground-truth images. Both images are passed in
as URLs via the Google Gemini API11. Mirroring our user
study, we prompt Gemini to score the similarity of the T2I
generated image to the ground-truth image grid from from
1 (“Not at all similar”) to 5 (“Extremely similar”). We also
examine if Gemini can correctly highlight which details of
the T2I image it thought were correct or incorrect and jus-
tify its score through text. We show the exact prompt we
use below:

CuRe and Ground-Truth Likelihood. Similar to our
user study setup in Fig. 10 (Appendix C.4), we ask Gemini
to rate cultural representativeness (Q3a) and likelihood of
the T2I image belonging to the class of artifact a, which we
call ground-truth likelihood (Q3b). Ground-truth likelihood
is very similar to perceptual similarity in what it is trying to
measure (faithfulness / factuality), but unlike PS, Gemini
must score GT likelihood without seeing any ground-truth
images of artifact a. Similar to PS, we ask Gemini to justify
its scores through text. We show the exact prompt below:

Prompt for CuRe and GT Likelihood:

This is an AI-generated image of {item name},
which is a type of {category name}. Please analyze
this image and answer the following questions:
1. Cultural Representativeness: On a scale of 1-
5 (where 1 is ”Highly Unlikely” and 5 is ”Ex-
tremely Likely”), how likely can this item be found
in {country}?
2. Ground-Truth Likelihood: On a scale of 1-5
(where 1 is ”Highly Unlikely” and 5 is ”Extremely
Likely”), how likely is this an accurate image of
{item name}?
3. Description: What specific details in the AI-
generated image make it accurate or inaccurate
compared to how this object typically appears in
{country} or your understanding of {item name}?
Format your response as JSON with keys:
’country likelihood’, ’item accuracy’, and ’de-
tails analysis’.

11https://ai.google.dev/gemini-api/docs/models#
gemini-2.0-flash

38

https://ai.google.dev/gemini-api/docs/models#gemini-2.0-flash
https://ai.google.dev/gemini-api/docs/models#gemini-2.0-flash


I.2. Analysis of Gemini 2.0 Flash Responses.
Here we discuss several illustrative examples of Gemini 2.0
Flash performance on our CuRe dataset. In Fig. 22, we
show the T2I system generated image (“AI Image”) and
representative ground-truth image from Wikimedia (“Real
Image”) alongside scores for cultural representativeness
(CuRe) from our user study ϕ∗

CuRe and Gemini ϕ∗
Gemini.

To evaluate if Gemini can capture correct or incorrect cul-
tural details highlighted by workers who identify with the
culture of each cultural artifact, we also write score justi-
fications provided by workers from Prolific (“Human Jud-
ments”) as well as Gemini (“MLLM Judgment”).

In E1 (Femi Kuti), workers unanimously highlight incor-
rect facial features and hairstyle while Gemini gives a high
CuRe score based on general body structure and attire, and
misses culturally specific identity markers. Similarly in E3
(Chuseok), workers point out that many details in the image
look Chinese (red lanterns, hairstyle, attire, background)
and “not a single theme” resembles Korean Chuseok. Gem-
ini’s description emphasizes the presence of traditional Ko-
rean dress and a village setting as reasons for a high CuRe
score. E4 (Sámi Headwear) continues this trend - while
Gemini believes that colors, shape, adornments, and textile
patterns are accurate to indigenous Sami culture, workers
highlight that the subject appears Asian and not Northern
European, and the fabric texture, color, and fur are not accu-
rate to Finnish Sami headwear. E6 (Portrait of Amir Kabir)
offers a similar case: Gemini gives a high CuRe score, ref-
erencing Qajar-era styling. Workers, however, flag specific
missing details like the hat, mustache style, and necklace
elements that signify historical authenticity.

E2 (Jollof Rice) and shows a reverse failure: workers ap-
preciate the image, noting the correct rice type, color, and
ingredients. Gemini disagrees with the workers and states
that while the item appears local to Nigeria, several details
indicate that it may not be faithful to Jollof rice, including
grain shape (pasta looking instead of long-grain), ingredi-
ents, and garnish.

For E5 (Takht-e Fulad), Gemini misidentifies the archi-
tecture as Egyptian and dismisses its relevance to Iran en-
tirely. Workers believe that while the image might belong to
Iranian culture, it is missing details local to buildings from
Esfahan (blue ceramic) and may more resemble other his-
torical Iranian sites (Takht-e Jamshid). This example high-
lights that workers are able to latch on to these nuanced
cultural differences, while Gemini’s judgment is more bi-
nary. E7 (Kiping) is more straightforward: both Gemini
and workers recognize that the T2I system generated im-
age is entirely off, i.e. a cartoon animal instead of a food
item. This shows that Gemini is able to latch on to more
clear cases of T2I system failures. Lastly, in E8 (Pulseira),
Gemini agrees with workers that the design, and aesthetic
is plausible for the Brazilian context, even if not “inher-

ently Brazilian”. Gemini docks a point for CuRe, citing the
shine and stones of the bracelet may indicate a luxurious
unaffordability for “a larger portion of the (Brazilian) popu-
lation”, while workers point out that the “details in the shiny
stones” are in fact quite accurate for Brazilian pulseira.

Regional Trend: A notable pattern is that most failure
cases involve artifacts from the Global South (Nigeria,
Iran). While Gemini 2.0 Flash performs well on globally
familiar or culturally neutral items (the “head”), it struggles
with region-specific details that require localized knowl-
edge (e.g. mistaking Chinese culture for Korean). This
likely reflects the long tail nature of the pretraining data
of T2I systems, and highlights the need for more cultur-
ally balanced data curation and catering to more heteroge-
neous preferences to improve alignment with diverse user
perspectives.
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Figure 22. Visualization of Gemini 2.0 Flash responses where the MLLM either failed or succeeded in identifying nuances compared to
humans. Examples were generated using FLUX.1 [dev], SD 3.5 Large, and SD 1.5. (Continued on next page)

E# AI Image Real Image Feedback

E1

Artifact: Femi Kuti
Category: Musician
ϕ∗
CuRe : 2.34

Region: Nigeria
Super Category: People
ϕGemini : 5

Human Judgments (User Study):
1. The image is someone holding a microphone but that is not femi kuti
2. The image seems inaccurate from the images of Kuti I used to see.
3. The face is not just right with with me and the hair is just off....Femi has very distinctive blend of grey hair.

MLLM Judgment (Gemini 2.0 Flash):
The generated image bears a strong resemblance to Femi Kuti, especially concerning his facial features, skin tone,
and general build as seen in the real images. The attire and overall style are also relatively consistent with his public
image. However, subtle details like the precise shape of his nose and mouth, as well as the sharpness of the image,
differentiate it from the real photos. The generated image’s attire is similar to what he might wear but not an exact
match of anything in the real images.Considering all these aspects, the similarity is high but not perfect.

E2

Artifact: Jollof Rice
Category: Rice dish
ϕ∗
CuRe : 4.67

Region: Nigeria
Super Category: Food
ϕGemini : 5

Human Judgments (User Study):
1. The image gets the color of Jollof rice
2. The rice and the colour of the rice after been cooked makes it look like jollof from my culture.
3. The image has used the correct kind of rice, ingredients, and sauce, in my country

MLLM Judgment (Gemini 2.0 Flash):
The item can almost definitely be found in Nigeria. However, the rice itself does not resemble Jollof rice. Jollof rice
typically uses long-grain rice, which, after cooking, retains a relatively distinct shape. The rice in the AI-generated
image looks more like orzo pasta with an orange tint. The orange cubes included in the dish do not generally feature
in Jollof rice. It usually includes tomato, pepper, onions, and spices. Also, Jollof rice is not normally garnished with
a large green leafy sprig.

E3

Artifact: Chuseok
Category: Harvest festival
ϕ∗
CuRe : 1.67

Region: South Korea
Super Category: Celebrations
ϕGemini : 5

Human Judgments (User Study):
1. I feel like it’s close to getting it right, but the patterns on the waist and sleeves, for example, makes it look like almost
we’d never see something like this. It’d be like, let’s say we are trying to find certain colored horses, but perhaps AI
generates the horses with patterns of color never found in nature.
2. The hairstyle in the picture is more Chinese than Korean. Also, the detail of the traditional Korean clothing is not
correct. There are also a number of red lanterns in the background, which is also more Chinese than Korean. I cannot
find a single theme in the photo that is related to Korean Chuseok.
3. The figure in the image is where wrong traditional attire and the background architectures also looks like Chinese.

MLLM Judgment (Gemini 2.0 Flash):
The image depicts a woman in a Hanbok, a traditional Korean dress, likely taken in an area resembling a traditional
Korean village. Hanboks are commonly worn in Korea, especially during festivals like Chuseok. The likelihood of
finding a Hanbok in Korea is extremely high. The accuracy as an image of Chuseok is also high. Hanboks are
commonly worn during Chuseok. Some details make the image accurate, such as the Hanbok itself, which is generally
accurate, and the setting, which suggests a traditional Korean village. Some minor inaccuracies include the specific
style of the Hanbok, which seems a bit stylized, and it does not include other aspects related to Chuseok, such as food
or activities.

E4

Artifact: Sami headwear
Category: Hat
ϕ∗
CuRe : 2

Region: Finland
Super Category: Fashion
ϕGemini : 5

Human Judgments (User Study):
1. The person wearing the hat doesn’t look Northern European.
2. The image has used an outfit that other indigenous people from northern hemisphere might use, but based on my
experience it doesn’t look extremely similar to Finnish Sami headwear. The fabric texture and colors are different
from what I have seen in real life.
3. The woman in the pictute is asian and Sami people aren’t asian. The hat is too wide and the fur is not supposed to
be on top of the hat.

MLLM Judgment (Gemini 2.0 Flash):
The image shows a person wearing Sami headwear, specifically a hat with intricate patterns and a possible fur trim
at the top. The colors are primarily red, white, and green, which are commonly found in Sami designs. The overall
shape of the hat, along with the additional adornments like the colorful braids and beads around the neck, matches
the traditional appearance of Sami attire. The designs also appear to be consistent with Sami textile patterns, which
are often geometric and symbolic. Given that the Sami people inhabit areas within Finland, it is extremely likely that
this type of headwear can be found there. The overall image appears to be an accurate representation of Sami headwear.

(a) Examples 1–4 of Gemini 2.0 Flash failure cases (Examples 1–3 generated with FLUX.1 [dev], and Example 4 with SD 3.5 Large).
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Figure 22. Continued from previous page.

E# AI Image Real Image Feedback

E5

Artifact: Takht-e Fulad
Category:Monument/Memorial
ϕ∗
CuRe : 3.67

Region: Iran
Super Category: Architecture
ϕGemini : 1

Human Judgments (User Study):
1. so the image has certain specification like carvings are quite similar, the stone types also similar to the one I saw
in my country, however I think this image is closer to Takhte-Jamshid, as it does not have blue ceramic which usually
be used in Esfahan an is one of the icons of any munument in Esfahan.
2. The coloring is different and Isfahanian buildings have different sets of colors and style more colorful.
3. The image is so similar to the type of historical buildings in Iran.

MLLM Judgment (Gemini 2.0 Flash):
The image shows a large stone structure with hieroglyphs, reminiscent of ancient Egyptian architecture. Takht-e Fulad,
in contrast, is a historical cemetery in Isfahan, Iran, which primarily consists of tombstones, mausoleums, and intricate
stonework with Persian inscriptions, not large temples. Therefore, it is highly unlikely that this image depicts something
found in Iran or an accurate representation of Takht-e Fulad.

E6

Artifact: Portrait-Amir Kabir
Category: Oil Painting
ϕ∗
CuRe : 3

Region: Iran
Super Category: Art
ϕGemini : 5

Human Judgments (User Study):
1. The only thing similar to Amir Kabir AI to the real life is the facial structures like nose and eyes. The beard needs
improvement as each era in Iranian culture, men used to have different hair and beard styles. The cone shaped hat is
important in displaying who this person was and the power he had during Qajar in Iran. In addition, the texture of the
clothes and the famous necklace are items that AI ”must” add to the image made since they are distinct elements that
show Persian culture especially for showing a historical figure.
2. It has the right feature in the face but lack of detail in the outfit and background.
3. The colour of his mustaches should be darker, and its style is not Iranian and looks more like Mongols and Turks.

MLLM Judgment (Gemini 2.0 Flash):
A portrait of Amir Kabir is highly likely to be found in Iran due to his historical importance. The image appears to be an
accurate representation, showing him in traditional attire common for the Qajar era. The details like the style of beard,
the coat, and the head covering are consistent with known depictions of him. However, judging finer accuracy requires
comparison with specific known portraits, but generally, the visual style and features align with expectations.

E7

Artifact: Kiping
Category: Flatbread
ϕ∗
CuRe : 1.34

Region: Philippines
Super Category: Food
ϕGemini : 1

Human Judgments (User Study):
1. The image does not portray the meaning of Kiping at all.
2. The image shown was a type of an animal which is obviously so far from ”Kiping” which is a type of food.
3. The image is an animal holding a spray bottle, it has no connection to kiping.

MLLM Judgment (Gemini 2.0 Flash):
The image features a cartoon cat holding what appears to be a small pump or sprayer. There is absolutely nothing in the
image resembling Kiping, which is a type of leaf-shaped, colorful wafer made from glutinous rice. Therefore, it’s highly
unlikely this image depicts Kiping or could be found in the Philippines as a depiction of Kiping. The AI hallucinated a
completely different scene.

E8

Artifact: Pulseira
Category: Jewellery
ϕ∗
CuRe : 5

Region: Brazil
Super Category: Fashion
ϕGemini : 4

Human Judgments (User Study):
1. This is exactly how a pulseira is, a piece of jewellery that goes on the wrist
2. The image is very similar to the name of Pulseira.
3. This bracelet represents one of the forms of objects that we wear on our wrist, very beautiful with details in shiny stones.

MLLM Judgment (Gemini 2.0 Flash):
The image depicts a bracelet with a braided or woven metal band and a spherical centerpiece covered in small stones
(possibly diamonds or crystals). The clasp appears to be a cylindrical metal piece. Jewelry of this style, particularly
silver-tone metal and crystal/diamond combinations, is widely available in Brazil. Brazilians enjoy both fine jewelry and
more affordable fashion jewelry. The design isn’t inherently ’Brazilian’ but the style is commonly found. It could be sold in
upscale stores or at street markets. The image accurately represents what a ”pulseira” (Portuguese for bracelet) can look like.
While the term encompasses a wide variety of bracelet styles, this particular design is plausible and well-executed. The
details, such as the braiding of the metal and the studded sphere, are consistent with what one would expect. The braided
metal design is common in bracelets. The overall aesthetic is refined and somewhat luxurious. The clasp type is also
reasonable. **Inaccuracy:** There is little that points to this image being highly ’Brazilian’, as opposed to generally stylish.
The price point may make it difficult for a larger portion of the population to afford. If the center sphere is made of real
diamonds, it could be less common than if it were made of crystals. It looks very shiny. The dark and reflective background
gives it a commercial aesthetic, which may not immediately invoke Brazil, but is still considered a fairly accurate
representation of a pulseira.

(b) Examples 5–6 of Gemini 2.0 Flash failure cases (Example 5: SD 3.5 Large, Example 6: SD 1.5), and Examples 7–8 of successful cases (Example 7:
FLUX.1 [dev], Example 8: SD 3.5 Large)
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